当前位置: 首页 > news >正文

其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

目录

1. Skiplist跳表的概念

2. Skiplist跳表的效率

3. Skiplist跳表的实现

3.1 力扣1206. 设计跳表

3.2 Skiplist的初始化和查找

3.3 Skiplist的增加和删除

3.4 Skiplist的源码和OJ测试

4. 跳表和平衡搜索树/哈希表的对比

本篇完。


1. Skiplist跳表的概念

        skiplist是由美国计算机科学家William Pugh(威廉 普格)于1989年发明。skiplist本质上是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是 一样的,可以作为key或者key/value的查找模型。skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。我们知道在对一个有序链表进行查找,它的时间复杂度为O(N)。

William Pugh开始了他的优化思路:

假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示:

        这样新增的一层指针通过连接可以形成新的链表,它包含了整个链表节点的一半,由此需要在这一层进行比较、筛除的个数也就降低了一半。

        以此类推,继续增加一层指针,新链表的节点数下降,查找的效率自然而然也就提高了。按照上述每增加一层,节点数就少一半,其查找的过程类似于二分查找,使得查找的时间复杂度可以降低到O(logN)。

        上述查找的前提是一个有序的链表。无论是对其中的链表新增节点,还是删除节点,都可能打乱原有维持的指针连接,从而导致跳表失效。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新退化成O(N)。

        随机层数: 为了避免这种情况,skiplist的设计不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数。


2. Skiplist跳表的效率

        那么skiplist在引入随机层数后,如何保证其查找效率呢?首先,这个随机层数会有一个限制,这里把它叫做maxLevel,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在Redis的skiplist实现中,这两个参数的取值为:p = 1/4,maxLevel = 32。

        根据前面randomLevel()的伪码,很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
  • 节点层数大于等于3的概率为p^2,而节点层数恰好等于3的概率为p^2*(1-p)。
  • 节点层数大于等于4的概率为p^3,而节点层数恰好等于4的概率为p^3*(1-p)。
  • ......

最终可以得到这样一个数学式,用于计算一个节点的平均层数:

有了这个公式,我们可以很容易计算出:

当 p =  1/2 时: 每个节点所包含的平均指针数目为2。

当 p =  1/4 时: 每个节点所包含的平均指针数目为1.33。                 

        至于跳表的平均时间复杂度为O(logN)的证明,这推导的过程较为复杂,下面的两篇中英文章有详细讲解:

铁蕾大佬的博客:Redis内部数据结构详解(6)——skiplist - 铁蕾的个人博客

William_Pugh大佬的论文:http://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf


3. Skiplist跳表的实现

力扣上有一道实现跳表的题,可以在这上面完成跳表的测试:

3.1 力扣1206. 设计跳表

1206. 设计跳表

难度 困难

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 8045 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)

了解更多 : 跳表 - OI Wiki

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

提示:

  • 0 <= num, target <= 2 * 10^4
  • 调用searchadd,  erase操作次数不大于 5 * 10^4 
class Skiplist {
public:Skiplist() {}bool search(int target) {}void add(int num) {}bool erase(int num) {}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/

3.2 Skiplist的初始化和查找

Skiplist的初始化:

        跳表不仅仅是要存储数据 _data,还需要有next指针,当然这些next指针也不止一个 这取决于当前节点的层数。

结合此图就可以知道next指针应该在一个数组中:

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){_head = new SkiplistNode(-1, 1); // 头节点,层数是1}
}

Skiplist的search查找:

        查找的过程:查找是要和下一个节点的值相比,并不是和当前节点的值相比一开始cur在哨兵位头节点的最高层 head,开始进行比较。设要查找的值为target,如果下一个节点为空或者下一个节点的值比target大,那么cur需要向下一层走,如果下一个节点的值比targe小,那么cur向右走。重复上述过程,直至找到或者没找到(没找到的话,cur会到第-1层,层数是从第0层开始的)

bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}

3.3 Skiplist的增加和删除

Skiplist的add增加:

假设要增加17,要怎么操作?

  1. 获得这个结点的层数:RandomLevel( );
  2. 找到这个结点的前后链接关系(此过程就像查找这个结点每一层的前一个结点,后面的删除结点也需要用到,所以封装成一个FindPrevNode函数):比如查找17的话就是prev_val < 17 < next_val,需要从头结点开始找,记录每一层的前一个指针。
	Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}

这里的RandomLevel()是以一种巧妙的方式完成的:

        通过_p可以控制最终值产生范围的概率。如_p是0.5的话,生成的随机数小于RAND_MAX的一半才可能增加层数。


Skiplist的erase删除

删除怎么操作?假设现在要删除17:

        删除的操作和增加的操作几乎一样,通过FindPrevNode找到该结点的所有前驱结点,让所有前驱结点指向被删除结点的next即可。

	bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}

3.4 Skiplist的源码和OJ测试

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/


4. 跳表和平衡搜索树/哈希表的对比

跳表和平衡搜索树的对比:

        跳表相比平衡搜索树(AVL树和红黑树)对比都可以做到遍历数据有序,时间复杂度也差不多,都是O(logN)。不过跳表与平衡搜索树相比,跳表的优势在于:

  • 跳表实现简单,容易控制。平衡树增删查改遍历都更复杂。
  • 跳表的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。可是跳表可以通过p来调整每个节点的指针个数,那是个可接受的数量。

跳表和哈希表的对比:

        跳表相比哈希表而言,跳表在查找效率上更差一点。哈希表平均时间复杂度是O(1),比跳表的O(logN)快。

skiplist与哈希表相比,skiplist的优势在于:

  • 遍历数据有序。
  • skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。
  • 哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。

本篇完。

高阶数据结构到这先暂告一段落了。

相关文章:

其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

目录 1. Skiplist跳表的概念 2. Skiplist跳表的效率 3. Skiplist跳表的实现 3.1 力扣1206. 设计跳表 3.2 Skiplist的初始化和查找 3.3 Skiplist的增加和删除 3.4 Skiplist的源码和OJ测试 4. 跳表和平衡搜索树/哈希表的对比 本篇完。 1. Skiplist跳表的概念 skiplist是…...

力扣230. 二叉搜索树中第K小的元素

Problem: 230. 二叉搜索树中第K小的元素 文章目录 题目描述思路复杂度Code 题目描述 思路 直接利用二叉搜索树中序遍历为一个有序序列的特性&#xff1a; 记录一个int变量rank&#xff0c;在中序遍历时若当前rank k则返回当前节点值 复杂度 时间复杂度: O ( n ) O(n) O(n);其…...

Linux_应用篇(07) 系统信息与系统资源

在应用程序当中&#xff0c;有时往往需要去获取到一些系统相关的信息&#xff0c;譬如时间、日期、以及其它一些系统相关信息&#xff0c;本章将向大家介绍如何通过 Linux 系统调用或 C 库函数获取系统信息&#xff0c; 譬如获取系统时间、日期以及设置系统时间、日期等&#x…...

基于Vue的验证码实现

一、验证码核心实现 创建slide-verify.vue&#xff0c;代码如下&#xff1a; <template><divclass"slide-verify":style"{ width: w px }"id"slideVerify"onselectstart"return false;"><!-- 图片加载遮蔽罩 -->&…...

P4【力扣217,389,496】【数据结构】【哈希表】C++版

【217】存在重复元素 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 &#xff0c;返回 true &#xff1b;如果数组中每个元素互不相同&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3,1] 输出&#xff1a;true 示例 2&#xff1a;…...

PE文件(六)新增节-添加代码作业

一.手动新增节添加代码 1.当预备条件都满足&#xff0c;节表结尾没有相关数据时&#xff1a; 现在我们将ipmsg.exe用winhex打开&#xff0c;在节的最后新增一个节用于存放我们要增加的数据 注意&#xff1a;飞鸽的文件对齐和内存对齐是一致的 先判断节表末尾到第一个节之间…...

ICRA 2024: NVIDIA 联合多伦多大学、加州大学伯克利分校、苏黎世联邦理工学院等研究人员开发了精细操作的手术机器人

英伟达&#xff08;NVIDIA&#xff09;正与学术研究人员合作&#xff0c;研究手术机器人。 NVIDIA 联合多伦多大学、加州大学伯克利分校、苏黎世联邦理工学院和佐治亚理工学院的研究人员开发了 ORBIT-Surgical&#xff0c;一个训练机器人的模拟框架&#xff0c;可以提高手术团…...

探索Go语言的原子操作秘籍:sync/atomic.Value全解析

引言 ​ 在并发编程的世界里&#xff0c;数据的一致性和线程安全是永恒的话题。Go语言以其独特的并发模型——goroutine和channel&#xff0c;简化了并发编程的复杂性。然而&#xff0c;在某些场景下&#xff0c;我们仍然需要一种机制来保证操作的原子性。这就是sync/atomic.V…...

【java深入学习第3章】利用 Spring Boot 和 Screw 快速生成数据库设计文档

免费多模型AI网站,支持豆包、GPT-4o、谷歌Gemini等AI模型&#xff0c;无限制使用&#xff0c;快去白嫖&#x1f449;海鲸AI&#x1f525;&#x1f525;&#x1f525; 在开发过程中&#xff0c;数据库设计文档是非常重要的&#xff0c;它可以帮助开发者理解数据库结构&#xff0…...

继“三级淋巴结”之后,再看看“单细胞”如何与AI结合【医学AI|顶刊速递|05-25】

小罗碎碎念 24-05-25文献速递 今天想和大家分享的是肿瘤治疗领域的另一个热点——单细胞技术&#xff0c;我们一起来看看&#xff0c;最新出炉的顶刊&#xff0c;是如何把AI与单细胞结合起来的。 另外&#xff0c;今天是周末&#xff0c;所以会有两篇文章——一篇文献速递&…...

[图解]产品经理创新之阿布思考法

0 00:00:00,000 --> 00:00:01,900 那刚才我们讲到了 1 00:00:02,730 --> 00:00:03,746 业务序列图 2 00:00:03,746 --> 00:00:04,560 然后怎么 3 00:00:05,530 --> 00:00:06,963 画现状&#xff0c;怎么改进 4 00:00:06,963 --> 00:00:09,012 然后改进的模式…...

Proteus仿真小技巧(隔空连线)

用了好几天Proteus了.总结一下使用的小技巧. 目录 一.隔空连线 1.打开添加网络标号 2.输入网络标号 二.常用元件 三.运行仿真 四.总结 一.隔空连线 引出一条线,并在末尾点一下. 1.打开添加网络标号 选择添加网络标号, 也可以先点击按钮,再去选择线(注意不要点端口) 2.…...

抖音极速版:抖音轻量精简版本,新人享大福利

和快手一样&#xff0c;抖音也有自己的极速版&#xff0c;可视作抖音的轻量精简版&#xff0c;更专注于刷视频看广告赚钱&#xff0c;收益比抖音要高&#xff0c;可玩性更佳。 抖音极速版简介 抖音极速版是一个提供短视频创业和收益任务的平台&#xff0c;用户可以通过观看广…...

leetCode-hot100-数组专题之双指针

数组双指针专题 1.同向双指针1.1例题26.删除有序数组中的重复项27.移除元素80.删除有序数组中的重复项 Ⅱ 2.相向双指针2.1例题11.盛最多水的容器42.接雨水581.最短无序连续子数组 双指针在算法题中很常见&#xff0c;下面总结双指针在数组中的一些应用&#xff0c;主要分为两类…...

完成商品SPU管理页面

文章目录 1.引入前端界面1.将前端界面放到commodity下2.创建菜单3.进入前端项目&#xff0c;使用npm添加依赖1.根目录下输入2.报错 chromedriver2.27.2的问题3.点击链接下载压缩包&#xff0c;然后使用下面的命令安装4.再次安装 pubsub-js 成功5.在main.js中引入这个组件 4.修改…...

Ansible实战YAML语言完成apache的部署,配置,启动全过程

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f3dd;️Ansible专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年5月24日15点59分 目录 &#x1f4af;趣站推荐&#x1f4af; &#x1f38a;前言 ✨️YAML语言回顾 &#x1f386;1.编写YAML文…...

深入探索微软Edge:新一代浏览器的演进与创新

在数字时代的浪潮中&#xff0c;浏览器已不再只是简单的网页访问工具&#xff0c;而是成为了连接信息、服务与用户之间的重要桥梁。微软Edge作为微软公司推出的一款全新的浏览器&#xff0c;不仅承载着微软在互联网领域的最新愿景&#xff0c;还融合了多项前沿技术&#xff0c;…...

k8s使用Volcano调度gpu

k8s部署 https://www.yangxingzhen.com/9817.html cri-dockerd安装 https://zhuanlan.zhihu.com/p/632861515 安装nvidia-container-runtime https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html 安装k8s-device-plugin https://…...

x的平方根-力扣

本题想到使用二分法不断逼近一个区间&#xff0c;直到最后趋近于x&#xff0c;从而求得解。注意的点&#xff0c;一开始使用 if(mid * mid < x) 进行判断时&#xff0c;会出现越界&#xff0c;原因是输入一个很大的数是&#xff0c;超过int表示的范围&#xff0c;继而修改为…...

hot100 -- 回溯(上)

目录 &#x1f35e;科普 &#x1f33c;全排列 AC DFS &#x1f6a9;子集 AC DFS &#x1f382;电话号码的字母组合 AC DFS &#x1f33c;组合总和 AC DFS &#x1f35e;科普 忘记 dfs 的&#xff0c;先看看这个&#x1f447; DFS&#xff08;深度优先搜索&#xf…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...