当前位置: 首页 > news >正文

其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

目录

1. Skiplist跳表的概念

2. Skiplist跳表的效率

3. Skiplist跳表的实现

3.1 力扣1206. 设计跳表

3.2 Skiplist的初始化和查找

3.3 Skiplist的增加和删除

3.4 Skiplist的源码和OJ测试

4. 跳表和平衡搜索树/哈希表的对比

本篇完。


1. Skiplist跳表的概念

        skiplist是由美国计算机科学家William Pugh(威廉 普格)于1989年发明。skiplist本质上是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是 一样的,可以作为key或者key/value的查找模型。skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。我们知道在对一个有序链表进行查找,它的时间复杂度为O(N)。

William Pugh开始了他的优化思路:

假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示:

        这样新增的一层指针通过连接可以形成新的链表,它包含了整个链表节点的一半,由此需要在这一层进行比较、筛除的个数也就降低了一半。

        以此类推,继续增加一层指针,新链表的节点数下降,查找的效率自然而然也就提高了。按照上述每增加一层,节点数就少一半,其查找的过程类似于二分查找,使得查找的时间复杂度可以降低到O(logN)。

        上述查找的前提是一个有序的链表。无论是对其中的链表新增节点,还是删除节点,都可能打乱原有维持的指针连接,从而导致跳表失效。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新退化成O(N)。

        随机层数: 为了避免这种情况,skiplist的设计不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数。


2. Skiplist跳表的效率

        那么skiplist在引入随机层数后,如何保证其查找效率呢?首先,这个随机层数会有一个限制,这里把它叫做maxLevel,其次会设置一个多增加一层的概率p。那么计算这个随机层数的伪代码如下图:

在Redis的skiplist实现中,这两个参数的取值为:p = 1/4,maxLevel = 32。

        根据前面randomLevel()的伪码,很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)。
  • 节点层数大于等于3的概率为p^2,而节点层数恰好等于3的概率为p^2*(1-p)。
  • 节点层数大于等于4的概率为p^3,而节点层数恰好等于4的概率为p^3*(1-p)。
  • ......

最终可以得到这样一个数学式,用于计算一个节点的平均层数:

有了这个公式,我们可以很容易计算出:

当 p =  1/2 时: 每个节点所包含的平均指针数目为2。

当 p =  1/4 时: 每个节点所包含的平均指针数目为1.33。                 

        至于跳表的平均时间复杂度为O(logN)的证明,这推导的过程较为复杂,下面的两篇中英文章有详细讲解:

铁蕾大佬的博客:Redis内部数据结构详解(6)——skiplist - 铁蕾的个人博客

William_Pugh大佬的论文:http://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf


3. Skiplist跳表的实现

力扣上有一道实现跳表的题,可以在这上面完成跳表的测试:

3.1 力扣1206. 设计跳表

1206. 设计跳表

难度 困难

不使用任何库函数,设计一个 跳表 。

跳表 是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。

例如,一个跳表包含 [30, 40, 50, 60, 70, 90] ,然后增加 8045 到跳表中,以下图的方式操作:

跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)。跳表的每一个操作的平均时间复杂度是 O(log(n)),空间复杂度是 O(n)

了解更多 : 跳表 - OI Wiki

在本题中,你的设计应该要包含这些函数:

  • bool search(int target) : 返回target是否存在于跳表中。
  • void add(int num): 插入一个元素到跳表。
  • bool erase(int num): 在跳表中删除一个值,如果 num 不存在,直接返回false. 如果存在多个 num ,删除其中任意一个即可。

注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。

示例 1:

输入
["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"]
[[], [1], [2], [3], [0], [4], [1], [0], [1], [1]]
输出
[null, null, null, null, false, null, true, false, true, false]解释
Skiplist skiplist = new Skiplist();
skiplist.add(1);
skiplist.add(2);
skiplist.add(3);
skiplist.search(0);   // 返回 false
skiplist.add(4);
skiplist.search(1);   // 返回 true
skiplist.erase(0);    // 返回 false,0 不在跳表中
skiplist.erase(1);    // 返回 true
skiplist.search(1);   // 返回 false,1 已被擦除

提示:

  • 0 <= num, target <= 2 * 10^4
  • 调用searchadd,  erase操作次数不大于 5 * 10^4 
class Skiplist {
public:Skiplist() {}bool search(int target) {}void add(int num) {}bool erase(int num) {}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/

3.2 Skiplist的初始化和查找

Skiplist的初始化:

        跳表不仅仅是要存储数据 _data,还需要有next指针,当然这些next指针也不止一个 这取决于当前节点的层数。

结合此图就可以知道next指针应该在一个数组中:

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){_head = new SkiplistNode(-1, 1); // 头节点,层数是1}
}

Skiplist的search查找:

        查找的过程:查找是要和下一个节点的值相比,并不是和当前节点的值相比一开始cur在哨兵位头节点的最高层 head,开始进行比较。设要查找的值为target,如果下一个节点为空或者下一个节点的值比target大,那么cur需要向下一层走,如果下一个节点的值比targe小,那么cur向右走。重复上述过程,直至找到或者没找到(没找到的话,cur会到第-1层,层数是从第0层开始的)

bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}

3.3 Skiplist的增加和删除

Skiplist的add增加:

假设要增加17,要怎么操作?

  1. 获得这个结点的层数:RandomLevel( );
  2. 找到这个结点的前后链接关系(此过程就像查找这个结点每一层的前一个结点,后面的删除结点也需要用到,所以封装成一个FindPrevNode函数):比如查找17的话就是prev_val < 17 < next_val,需要从头结点开始找,记录每一层的前一个指针。
	Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}

这里的RandomLevel()是以一种巧妙的方式完成的:

        通过_p可以控制最终值产生范围的概率。如_p是0.5的话,生成的随机数小于RAND_MAX的一半才可能增加层数。


Skiplist的erase删除

删除怎么操作?假设现在要删除17:

        删除的操作和增加的操作几乎一样,通过FindPrevNode找到该结点的所有前驱结点,让所有前驱结点指向被删除结点的next即可。

	bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}

3.4 Skiplist的源码和OJ测试

class SkiplistNode
{
public:int _val;vector<SkiplistNode*> _nextV;SkiplistNode(int val, int level):_val(val), _nextV(level, nullptr){}
};class Skiplist
{
private:typedef SkiplistNode Node;Node* _head;size_t _maxLevel = 32;double _p = 0.5;
public:Skiplist(){srand(time(nullptr)); // 构造函数种下随机数种子_head = new SkiplistNode(-1, 1); // 头节点,层数是1}bool search(int target){Node* cur = _head;int level = _head->_nextV.size() - 1;while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < target){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val > target){--level; //下一个节点是空(尾),或目标值比下一个节点值要小,向下走}else{return true;}}return false;}vector<Node*> FindPrevNode(int num){Node* cur = _head;int level = _head->_nextV.size() - 1;vector<Node*> prevV(level + 1, _head); // 插入位置每一层前一个节点指针while (level >= 0){if (cur->_nextV[level] && cur->_nextV[level]->_val < num){cur = cur->_nextV[level]; // 目标值比下一个节点值要大,向右走}else if (cur->_nextV[level] == nullptr || cur->_nextV[level]->_val >= num){prevV[level] = cur; // 更新level层前一个--level; //下一个节点是空(尾),目标值比下一个节点值要小,向下走}}return prevV;}void add(int num){vector<Node*> prevV = FindPrevNode(num);int n = RandomLevel();Node* newnode = new Node(num, n);if (n > _head->_nextV.size()) // 如果n超过当前最大的层数,那就升高一下_head的层数{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for (size_t i = 0; i < n; ++i) // 链接前后节点{newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}int RandomLevel(){size_t level = 1; // rand() ->[0, RAND_MAX]之间while (rand() <= RAND_MAX * _p && level < _maxLevel){++level;}return level;}bool erase(int num){vector<Node*> prevV = FindPrevNode(num);if (prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num){return false; // 第一层下一个不是val,val不在表中}else{Node* del = prevV[0]->_nextV[0];for (size_t i = 0; i < del->_nextV.size(); i++) // del节点每一层的前后指针链接起来{prevV[i]->_nextV[i] = del->_nextV[i];}delete del;int i = _head->_nextV.size() - 1; // 如果删除最高层节点,把头节点的层数降一下while (i >= 0){if (_head->_nextV[i] == nullptr)--i;elsebreak;}_head->_nextV.resize(i + 1);return true;}}
};/*** Your Skiplist object will be instantiated and called as such:* Skiplist* obj = new Skiplist();* bool param_1 = obj->search(target);* obj->add(num);* bool param_3 = obj->erase(num);*/


4. 跳表和平衡搜索树/哈希表的对比

跳表和平衡搜索树的对比:

        跳表相比平衡搜索树(AVL树和红黑树)对比都可以做到遍历数据有序,时间复杂度也差不多,都是O(logN)。不过跳表与平衡搜索树相比,跳表的优势在于:

  • 跳表实现简单,容易控制。平衡树增删查改遍历都更复杂。
  • 跳表的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。可是跳表可以通过p来调整每个节点的指针个数,那是个可接受的数量。

跳表和哈希表的对比:

        跳表相比哈希表而言,跳表在查找效率上更差一点。哈希表平均时间复杂度是O(1),比跳表的O(logN)快。

skiplist与哈希表相比,skiplist的优势在于:

  • 遍历数据有序。
  • skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。
  • 哈希表在极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力。

本篇完。

高阶数据结构到这先暂告一段落了。

相关文章:

其它高阶数据结构⑦_Skiplist跳表_概念+实现+对比

目录 1. Skiplist跳表的概念 2. Skiplist跳表的效率 3. Skiplist跳表的实现 3.1 力扣1206. 设计跳表 3.2 Skiplist的初始化和查找 3.3 Skiplist的增加和删除 3.4 Skiplist的源码和OJ测试 4. 跳表和平衡搜索树/哈希表的对比 本篇完。 1. Skiplist跳表的概念 skiplist是…...

力扣230. 二叉搜索树中第K小的元素

Problem: 230. 二叉搜索树中第K小的元素 文章目录 题目描述思路复杂度Code 题目描述 思路 直接利用二叉搜索树中序遍历为一个有序序列的特性&#xff1a; 记录一个int变量rank&#xff0c;在中序遍历时若当前rank k则返回当前节点值 复杂度 时间复杂度: O ( n ) O(n) O(n);其…...

Linux_应用篇(07) 系统信息与系统资源

在应用程序当中&#xff0c;有时往往需要去获取到一些系统相关的信息&#xff0c;譬如时间、日期、以及其它一些系统相关信息&#xff0c;本章将向大家介绍如何通过 Linux 系统调用或 C 库函数获取系统信息&#xff0c; 譬如获取系统时间、日期以及设置系统时间、日期等&#x…...

基于Vue的验证码实现

一、验证码核心实现 创建slide-verify.vue&#xff0c;代码如下&#xff1a; <template><divclass"slide-verify":style"{ width: w px }"id"slideVerify"onselectstart"return false;"><!-- 图片加载遮蔽罩 -->&…...

P4【力扣217,389,496】【数据结构】【哈希表】C++版

【217】存在重复元素 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 &#xff0c;返回 true &#xff1b;如果数组中每个元素互不相同&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3,1] 输出&#xff1a;true 示例 2&#xff1a;…...

PE文件(六)新增节-添加代码作业

一.手动新增节添加代码 1.当预备条件都满足&#xff0c;节表结尾没有相关数据时&#xff1a; 现在我们将ipmsg.exe用winhex打开&#xff0c;在节的最后新增一个节用于存放我们要增加的数据 注意&#xff1a;飞鸽的文件对齐和内存对齐是一致的 先判断节表末尾到第一个节之间…...

ICRA 2024: NVIDIA 联合多伦多大学、加州大学伯克利分校、苏黎世联邦理工学院等研究人员开发了精细操作的手术机器人

英伟达&#xff08;NVIDIA&#xff09;正与学术研究人员合作&#xff0c;研究手术机器人。 NVIDIA 联合多伦多大学、加州大学伯克利分校、苏黎世联邦理工学院和佐治亚理工学院的研究人员开发了 ORBIT-Surgical&#xff0c;一个训练机器人的模拟框架&#xff0c;可以提高手术团…...

探索Go语言的原子操作秘籍:sync/atomic.Value全解析

引言 ​ 在并发编程的世界里&#xff0c;数据的一致性和线程安全是永恒的话题。Go语言以其独特的并发模型——goroutine和channel&#xff0c;简化了并发编程的复杂性。然而&#xff0c;在某些场景下&#xff0c;我们仍然需要一种机制来保证操作的原子性。这就是sync/atomic.V…...

【java深入学习第3章】利用 Spring Boot 和 Screw 快速生成数据库设计文档

免费多模型AI网站,支持豆包、GPT-4o、谷歌Gemini等AI模型&#xff0c;无限制使用&#xff0c;快去白嫖&#x1f449;海鲸AI&#x1f525;&#x1f525;&#x1f525; 在开发过程中&#xff0c;数据库设计文档是非常重要的&#xff0c;它可以帮助开发者理解数据库结构&#xff0…...

继“三级淋巴结”之后,再看看“单细胞”如何与AI结合【医学AI|顶刊速递|05-25】

小罗碎碎念 24-05-25文献速递 今天想和大家分享的是肿瘤治疗领域的另一个热点——单细胞技术&#xff0c;我们一起来看看&#xff0c;最新出炉的顶刊&#xff0c;是如何把AI与单细胞结合起来的。 另外&#xff0c;今天是周末&#xff0c;所以会有两篇文章——一篇文献速递&…...

[图解]产品经理创新之阿布思考法

0 00:00:00,000 --> 00:00:01,900 那刚才我们讲到了 1 00:00:02,730 --> 00:00:03,746 业务序列图 2 00:00:03,746 --> 00:00:04,560 然后怎么 3 00:00:05,530 --> 00:00:06,963 画现状&#xff0c;怎么改进 4 00:00:06,963 --> 00:00:09,012 然后改进的模式…...

Proteus仿真小技巧(隔空连线)

用了好几天Proteus了.总结一下使用的小技巧. 目录 一.隔空连线 1.打开添加网络标号 2.输入网络标号 二.常用元件 三.运行仿真 四.总结 一.隔空连线 引出一条线,并在末尾点一下. 1.打开添加网络标号 选择添加网络标号, 也可以先点击按钮,再去选择线(注意不要点端口) 2.…...

抖音极速版:抖音轻量精简版本,新人享大福利

和快手一样&#xff0c;抖音也有自己的极速版&#xff0c;可视作抖音的轻量精简版&#xff0c;更专注于刷视频看广告赚钱&#xff0c;收益比抖音要高&#xff0c;可玩性更佳。 抖音极速版简介 抖音极速版是一个提供短视频创业和收益任务的平台&#xff0c;用户可以通过观看广…...

leetCode-hot100-数组专题之双指针

数组双指针专题 1.同向双指针1.1例题26.删除有序数组中的重复项27.移除元素80.删除有序数组中的重复项 Ⅱ 2.相向双指针2.1例题11.盛最多水的容器42.接雨水581.最短无序连续子数组 双指针在算法题中很常见&#xff0c;下面总结双指针在数组中的一些应用&#xff0c;主要分为两类…...

完成商品SPU管理页面

文章目录 1.引入前端界面1.将前端界面放到commodity下2.创建菜单3.进入前端项目&#xff0c;使用npm添加依赖1.根目录下输入2.报错 chromedriver2.27.2的问题3.点击链接下载压缩包&#xff0c;然后使用下面的命令安装4.再次安装 pubsub-js 成功5.在main.js中引入这个组件 4.修改…...

Ansible实战YAML语言完成apache的部署,配置,启动全过程

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f3dd;️Ansible专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年5月24日15点59分 目录 &#x1f4af;趣站推荐&#x1f4af; &#x1f38a;前言 ✨️YAML语言回顾 &#x1f386;1.编写YAML文…...

深入探索微软Edge:新一代浏览器的演进与创新

在数字时代的浪潮中&#xff0c;浏览器已不再只是简单的网页访问工具&#xff0c;而是成为了连接信息、服务与用户之间的重要桥梁。微软Edge作为微软公司推出的一款全新的浏览器&#xff0c;不仅承载着微软在互联网领域的最新愿景&#xff0c;还融合了多项前沿技术&#xff0c;…...

k8s使用Volcano调度gpu

k8s部署 https://www.yangxingzhen.com/9817.html cri-dockerd安装 https://zhuanlan.zhihu.com/p/632861515 安装nvidia-container-runtime https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html 安装k8s-device-plugin https://…...

x的平方根-力扣

本题想到使用二分法不断逼近一个区间&#xff0c;直到最后趋近于x&#xff0c;从而求得解。注意的点&#xff0c;一开始使用 if(mid * mid < x) 进行判断时&#xff0c;会出现越界&#xff0c;原因是输入一个很大的数是&#xff0c;超过int表示的范围&#xff0c;继而修改为…...

hot100 -- 回溯(上)

目录 &#x1f35e;科普 &#x1f33c;全排列 AC DFS &#x1f6a9;子集 AC DFS &#x1f382;电话号码的字母组合 AC DFS &#x1f33c;组合总和 AC DFS &#x1f35e;科普 忘记 dfs 的&#xff0c;先看看这个&#x1f447; DFS&#xff08;深度优先搜索&#xf…...

​线性注意力 vs. 传统注意力:效率与表达的博弈新解

​核心结论​&#xff1a;线性注意力用计算复杂度降维换取全局建模能力&#xff0c;通过核函数和结构优化补足表达缺陷 一、本质差异&#xff1a;两种注意力如何工作&#xff1f; ​特性​传统注意力&#xff08;Softmax Attention&#xff09;线性注意力&#xff08;Linear At…...

二叉树的遍历总结

144.二叉树的前序遍历(opens new window)145.二叉树的后序遍历(opens new window)94.二叉树的中序遍历 二叉数的先中后序统一遍历法 public static void preOrder(BiTree root){BiTree p root;LinkedList<BiTree> stack new LinkedList<>();while(p ! null ||…...

豆包和deepseek 元宝 百度ai区别是什么

豆包、DeepSeek、元宝和百度 AI 有以下区别&#xff1a; 开发公司 豆包5&#xff1a;由字节跳动公司基于云雀模型开发。DeepSeek4&#xff1a;是深度求索打造的开源多模态大模型。元宝1&#xff1a;是腾讯混元模型的落地产品&#xff0c;整合了 DeepSeek - R1 与混元模型。百…...

5.Nginx+Tomcat负载均衡群集

Tomcat服务器应用场景&#xff1a;tomcat服务器是一个免费的开放源代码的Web应用服务器&#xff0c;属于轻量级应用服务器&#xff0c;在中小型系统和并发访问用户不是很多的场合下被普遍使用&#xff0c;是开发和调试JSP程序的首选。一般来说&#xff0c;Tomcat虽然和Apache或…...

008-libb64 你有多理解base64?-C++开源库108杰

正确认识二进制数据和文本数据的关系;深刻理解 base64 编码核心等式&#xff1a;256256256 64646464 经常听到——以至 AI 也会这么回答的&#xff1a;base64 编码用于将二进制数据&#xff0c;转换为文本数据。但是&#xff0c;众所周知&#xff0c;在数字电子计算机中&#…...

Profinet 协议 IO-Link 主站网关(三格电子)

一、产品概述 1.1 产品用途 SG-PN-IOL-8A-001 网关是 Profinet 从转 IO-Link 主的网关设备 &#xff0c;可以将 IO-Link 从站设备接入 Profinet 系统&#xff0c;通过该网关可实现传感器及驱动器与控制 器之间的信息交互。网关有两个百兆网口和 8 个 IO-Link 端口&#xff0c;两…...

TDengine 开发指南—— UDF函数

UDF 简介 在某些应用场景中&#xff0c;应用逻辑需要的查询功能无法直接使用内置函数来实现&#xff0c;TDengine 允许编写用户自定义函数&#xff08;UDF&#xff09;&#xff0c;以便解决特殊应用场景中的使用需求。UDF 在集群中注册成功后&#xff0c;可以像系统内置函数一…...

SCAU数值计算OJ

18957.计算自然对数ln(x)的导数 Description 求自然对数ln(x)的导数&#xff0c;输入双精度实数x>1&#xff0c;输出自然对数ln(x)的导数&#xff08;精确到小数点后2位有效数&#xff0c;小数点后第2位四舍五入所得&#xff09;。输入格式 m(整数&#xff0c;实验数据总…...

#开发环境篇:postMan可以正常调通,但是浏览器里面一直报403

本地header代理下面内容即可 headers: { // 添加必要的请求头 ‘Host’: ‘服务端域名’, ‘Origin’: https://服务端域名, ‘Referer’: https://服务端域名 }, devServer: {// 本地开发代理API地址proxy: {^/file: {target: https://服务端域名,changeOrigin: true, // 是否…...

UI自动化常见的一些问题解决方式

1、遇到元素无法定位的情况 解决方法&#xff1a;&#xff08;1&#xff09;手写css 先找到父级的唯一元素 &#xff08;2&#xff09;手写xpath、 &#xff08;3&#xff09;js在浏览器控制台去定位 控制台定位样例&#xff1a;&#xff08;1&#xff09;…...