当前位置: 首页 > news >正文

16.线性回归代码实现

线性回归的实操与理解

介绍

线性回归是一种广泛应用的统计方法,用于建模一个或多个自变量(特征)与因变量(目标)之间的线性关系。在机器学习和数据科学中,线性回归是许多入门者的第一个模型,它提供了对监督学习问题的基础理解。本文将介绍线性回归的基本概念,并通过Python和PyTorch库来实操线性回归模型,深入理解其训练和预测过程。

线性回归的基本概念

线性回归假设目标变量(y)是输入变量(X)的线性组合,并可以通过最小二乘法来估计模型的参数(权重w和偏置b)。数学上,线性回归模型可以表示为:

y=w1​x1​+w2​x2​+…+wn​xn​+b

或者更一般地,使用矩阵形式表示:

y=XW+b

其中,X 是特征矩阵,W 是权重向量,b 是偏置项。

实操:使用PyTorch实现线性回归

1. 导入必要的库

首先,我们需要导入PyTorch和其他必要的库。

import torch  
import torch.nn as nn  
import torch.optim as optim  
import numpy as np  
import matplotlib.pyplot as plt


2. 生成模拟数据

为了演示线性回归,我们将生成一些模拟数据。

# 设置随机种子  
torch.manual_seed(0)  
np.random.seed(0)  # 生成数据  
n_samples = 100  
x = torch.randn(n_samples, 1) * 10  # 输入数据  
w_true = 2  
b_true = 1  
y = x * w_true + b_true + torch.randn(n_samples, 1) * 0.5  # 真实标签


3. 定义线性回归模型

使用PyTorch的nn.Module来定义线性回归模型。

class LinearRegressionModel(nn.Module):  def __init__(self, input_dim=1, output_dim=1):  super(LinearRegressionModel, self).__init__()  self.linear = nn.Linear(input_dim, output_dim)  def forward(self, x):  out = self.linear(x)  return out


4. 初始化模型和优化器

实例化模型,并定义损失函数和优化器。

# 初始化模型  
model = LinearRegressionModel()  # 定义损失函数和优化器  
criterion = nn.MSELoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01)


5. 训练模型

通过迭代训练数据来训练模型。

# 训练模型  
num_epochs = 1000  
for epoch in range(num_epochs):  # 前向传播  outputs = model(x)  loss = criterion(outputs, y)  # 反向传播和优化  optimizer.zero_grad()  # 清空梯度  loss.backward()  # 反向传播计算梯度  optimizer.step()  # 更新参数  if (epoch+1) % 100 == 0:  print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))


6. 评估模型

在训练完成后,我们可以评估模型的性能。但在这个简单的例子中,我们主要关注于模型是否能学习到正确的权重和偏置。

7. 可视化结果

我们可以将预测结果和真实数据可视化出来。

# 提取训练后的参数  
w, b = model.linear.weight.item(), model.linear.bias.item()  
print('w = {}, b = {}'.format(w, b))  # 可视化结果  
predicted = model(x).detach().numpy()  
plt.scatter(x.numpy(), y.numpy(), color='blue', label='True data')  
plt.plot(x.numpy(), predicted, color='red', linewidth=2, label='Predicted data')  
plt.legend()  
plt.show()


总结

通过本文的实操,我们深入理解了线性回归的基本原理和其在PyTorch中的实现方式。我们生成了模拟数据,定义了线性回归模型,并使用随机梯度下降优化器来训练模型。通过可视化结果,我们可以看到模型能够很好地拟合生成的数据,并且学习到的权重和偏置与真实

相关文章:

16.线性回归代码实现

线性回归的实操与理解 介绍 线性回归是一种广泛应用的统计方法,用于建模一个或多个自变量(特征)与因变量(目标)之间的线性关系。在机器学习和数据科学中,线性回归是许多入门者的第一个模型,它…...

Java进阶学习笔记1——课程介绍

课程适合学习的人员: 1)具备一定java基础的人员; 2)想深刻体会Java编程思想,成为大牛的人员; 学完有什么收获? 1)掌握完整的Java基础技术体系; 2)极强的编…...

【全开源】沃德商协会管理系统源码(FastAdmin+ThinkPHP+Uniapp)

一款基于FastAdminThinkPHPUniapp开发的商协会系统,新一代数字化商协会运营管理系统,以“智慧化会员体系、智敏化内容运营、智能化活动构建”三大板块为基点,实施功能全场景覆盖,一站式解决商协会需求壁垒,有效快速建立…...

python毕设项目选题汇总(全)

各位计算机方面的毕业生们,是不是在头疼毕业论文写什么呢,我这给大家提供点思路: 网站系统类 《基于python的招聘数据爬虫设计与实现》 《基于python和Flask的图书管理系统》 《基于照片分享的旅游景点推荐系统》 《基于djangoxadmin的学生信…...

c#从数据库读取数据到datagridview

从已有的数据库读取数据显示到winform的datagridview控件,具体代码如下: //判断有无表 if (sqliteConn.State ConnectionState.Closed) sqliteConn.Open(); SQLiteCommand mDbCmd sqliteConn.CreateCommand(); m…...

训练YOLOv9-S(注意:官方还没有提供YOLOv9-S的网络,我这是根据网络博客进行的步骤,按照0.33、0.50比例调整网络大小,参数量15.60M,计算量67.7GFLOPs)

文章目录 1、自己动手制造一个YOLOv9-S网络结构1.1 改前改后的网络结构(参数量、计算量)对比1.2 一些发现,YOLOv9代码打印的参数量计算量和Github上提供的并不一致,甚至yolov9-c.yaml代码打印出来是Github的两倍1.3 开始创造YOLOv…...

视觉检测实战项目——九点标定

本文介绍九点标定方法 已知 9 个点的图像坐标和对应的机械坐标,直接计算转换矩阵,核心原理即最小二乘拟合 {𝑥′=𝑎𝑥+𝑏𝑦+𝑐𝑦′=𝑎′𝑥+𝑏′𝑦+𝑐′ [𝑥1𝑦11𝑥2𝑦21⋮⋮⋮𝑥9𝑦91][𝑎𝑎′𝑏𝑏′𝑐𝑐′]=[𝑥1′𝑦…...

android git提交代码命令以及常见命令的使用

安装Git Ubuntu: sudo apt-get install git-core创建代码仓库: 配置身份: git config --global user.name "Tony" git confit --global user.email "tonygmail.com"查看身份: git config --global user.…...

类图的六大关系

类图中的六大关系包括:继承关系、实现关系、关联关系、聚合关系、组合关系和依赖关系。 1. 继承关系 继承是一种类与类之间的关系,表示一种泛化和特化的关系。子类继承父类的特性和行为。 class Animal {void eat() {System.out.println("This an…...

家政项目day2 需求分析(模拟入职后熟悉业务流程)

目录 1 项目主体介绍1.1 项目背景1.2 运营模式1.3 项目业务流程 2 运营端需求2.1 服务类型管理2.2 服务项目(服务)管理2.3 区域管理2.4 区域服务管理2.5 相关数据库表的管理2.6 设计工程结构2.7 测试接口(接口断点查看业务代码) 3…...

面试总结之:socket线路切换

"socket线路切换"通常指的是在网络通信过程中,根据当前网络状态或策略来动态更换数据传输路径的技术。这种技术可以提高通信的可靠性和性能。 在实际应用中,线路切换可能涉及到多种技术,例如: 负载均衡:根据每条路径的当前负载情况,动态地选择一条较为空闲的路…...

002 递归评论 mongodb websocket消息推送

文章目录 商品评论CommentController.javaComment.javaCommentServiceImpl.javaCommentRepository.javaCommentService.javaWebSocketConfig.javaWebSocketProcess.javaapplication.yamlproductReview.htmlindex.htmlindex.jsindex.css 订单评论EvaluateMapper.xmlEvaluateMapp…...

高开高走的续作,可不止《庆余年2》

说起最近霸屏的影视剧,莫过于《庆余年2》。火爆全网的讨论度总归是没有辜负观众们五年的等待,在五月的影视市场独占鳌头已成定局。张若昀、陈道明、李沁等一众演员稳定发挥,剧情节奏随着故事发展渐入佳境,评分一路高涨。 对影视作…...

uniapp android使用uni.chooseLocation,app云打包后,定位地址列表一直在加载中

复现BUG 1、自己生成一个证书 参考生成证书流程 2、使用刚生成证书的SHA1 ,重新创建一个高德key 高德开放平台地址 3、打包(打包的包名要与高德申请key所填的包名一致)...

详解http协议

什么是HTTP协议 定义 Http协议即超文本传送协议 (HTTP-Hypertext transfer protocol) 。 它定义了浏览器(即万维网客户进程)怎样向万维网服务器请求万维网文档,以及服务器怎样把文档传送给浏览器。从层次的角度看,HTTP是面向&am…...

台湾省军事演习路径规划:A*算法在复杂地形中的应用

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣! 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航: LeetCode解锁100…...

OpenHarmony鸿蒙软总线使用mbedtls数据加密详解

OpenHarmony鸿蒙软总线子系统中使用了多种的加密技术,本篇介绍调用mbedtls的数据加密。 调用mbedtls加密的源码位于: foundation/communication/dsoftbus/adapter/common/mbedtls/softbus_adapter_crypto.c 这个源码单元,调用mbedTLS库实现了各种加密功能,包括AES-GCM加密…...

【JavaEE】Servlet

文章目录 一、Servlet 是什么二、如何创建Servlet程序1、创建项目2、引入依赖3、创建目录4、编写代码5、打包程序6、部署程序7、验证程序 一、Servlet 是什么 二、如何创建Servlet程序 1、创建项目 2、引入依赖 Maven 项目创建完后,会自动生成一个 pom.xml 的文…...

SpringBoot——整合Redis

目录 Redis 创建Commodity表 启动MySQL和Redis 新建一个SpringBoot项目 pom.xml application.properties Commodity实体类 ComMapper接口 ComService业务层接口 ComServiceImpl业务接口的实现类 ComController控制器 RedisConfig配置类 SpringbootRdisApplication启…...

2024全新Langchain大模型AI应用与多智能体实战开发

2024全新Langchain大模型AI应用与多智能体实战开发 LangChain 就是一个 LLM 编程框架,你想开发一个基于 LLM 应用,需要什么组件它都有,直接使用就行;甚至针对常规的应用流程,它利用链(LangChain中Chain的由来)这个概念…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

麒麟系统使用-进行.NET开发

文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的&#xff0c;如果需要进行.NET开发&#xff0c;则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET&#xff0c;所以要进…...