16.线性回归代码实现
线性回归的实操与理解
介绍
线性回归是一种广泛应用的统计方法,用于建模一个或多个自变量(特征)与因变量(目标)之间的线性关系。在机器学习和数据科学中,线性回归是许多入门者的第一个模型,它提供了对监督学习问题的基础理解。本文将介绍线性回归的基本概念,并通过Python和PyTorch库来实操线性回归模型,深入理解其训练和预测过程。
线性回归的基本概念
线性回归假设目标变量(y)是输入变量(X)的线性组合,并可以通过最小二乘法来估计模型的参数(权重w和偏置b)。数学上,线性回归模型可以表示为:
或者更一般地,使用矩阵形式表示:
其中,X 是特征矩阵,W 是权重向量,b 是偏置项。
实操:使用PyTorch实现线性回归
1. 导入必要的库
首先,我们需要导入PyTorch和其他必要的库。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
2. 生成模拟数据
为了演示线性回归,我们将生成一些模拟数据。
# 设置随机种子
torch.manual_seed(0)
np.random.seed(0) # 生成数据
n_samples = 100
x = torch.randn(n_samples, 1) * 10 # 输入数据
w_true = 2
b_true = 1
y = x * w_true + b_true + torch.randn(n_samples, 1) * 0.5 # 真实标签
3. 定义线性回归模型
使用PyTorch的nn.Module来定义线性回归模型。
class LinearRegressionModel(nn.Module): def __init__(self, input_dim=1, output_dim=1): super(LinearRegressionModel, self).__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x): out = self.linear(x) return out
4. 初始化模型和优化器
实例化模型,并定义损失函数和优化器。
# 初始化模型
model = LinearRegressionModel() # 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
5. 训练模型
通过迭代训练数据来训练模型。
# 训练模型
num_epochs = 1000
for epoch in range(num_epochs): # 前向传播 outputs = model(x) loss = criterion(outputs, y) # 反向传播和优化 optimizer.zero_grad() # 清空梯度 loss.backward() # 反向传播计算梯度 optimizer.step() # 更新参数 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
6. 评估模型
在训练完成后,我们可以评估模型的性能。但在这个简单的例子中,我们主要关注于模型是否能学习到正确的权重和偏置。
7. 可视化结果
我们可以将预测结果和真实数据可视化出来。
# 提取训练后的参数
w, b = model.linear.weight.item(), model.linear.bias.item()
print('w = {}, b = {}'.format(w, b)) # 可视化结果
predicted = model(x).detach().numpy()
plt.scatter(x.numpy(), y.numpy(), color='blue', label='True data')
plt.plot(x.numpy(), predicted, color='red', linewidth=2, label='Predicted data')
plt.legend()
plt.show()
总结
通过本文的实操,我们深入理解了线性回归的基本原理和其在PyTorch中的实现方式。我们生成了模拟数据,定义了线性回归模型,并使用随机梯度下降优化器来训练模型。通过可视化结果,我们可以看到模型能够很好地拟合生成的数据,并且学习到的权重和偏置与真实
相关文章:
16.线性回归代码实现
线性回归的实操与理解 介绍 线性回归是一种广泛应用的统计方法,用于建模一个或多个自变量(特征)与因变量(目标)之间的线性关系。在机器学习和数据科学中,线性回归是许多入门者的第一个模型,它…...
Java进阶学习笔记1——课程介绍
课程适合学习的人员: 1)具备一定java基础的人员; 2)想深刻体会Java编程思想,成为大牛的人员; 学完有什么收获? 1)掌握完整的Java基础技术体系; 2)极强的编…...
【全开源】沃德商协会管理系统源码(FastAdmin+ThinkPHP+Uniapp)
一款基于FastAdminThinkPHPUniapp开发的商协会系统,新一代数字化商协会运营管理系统,以“智慧化会员体系、智敏化内容运营、智能化活动构建”三大板块为基点,实施功能全场景覆盖,一站式解决商协会需求壁垒,有效快速建立…...
python毕设项目选题汇总(全)
各位计算机方面的毕业生们,是不是在头疼毕业论文写什么呢,我这给大家提供点思路: 网站系统类 《基于python的招聘数据爬虫设计与实现》 《基于python和Flask的图书管理系统》 《基于照片分享的旅游景点推荐系统》 《基于djangoxadmin的学生信…...
c#从数据库读取数据到datagridview
从已有的数据库读取数据显示到winform的datagridview控件,具体代码如下: //判断有无表 if (sqliteConn.State ConnectionState.Closed) sqliteConn.Open(); SQLiteCommand mDbCmd sqliteConn.CreateCommand(); m…...
训练YOLOv9-S(注意:官方还没有提供YOLOv9-S的网络,我这是根据网络博客进行的步骤,按照0.33、0.50比例调整网络大小,参数量15.60M,计算量67.7GFLOPs)
文章目录 1、自己动手制造一个YOLOv9-S网络结构1.1 改前改后的网络结构(参数量、计算量)对比1.2 一些发现,YOLOv9代码打印的参数量计算量和Github上提供的并不一致,甚至yolov9-c.yaml代码打印出来是Github的两倍1.3 开始创造YOLOv…...
视觉检测实战项目——九点标定
本文介绍九点标定方法 已知 9 个点的图像坐标和对应的机械坐标,直接计算转换矩阵,核心原理即最小二乘拟合 {𝑥′=𝑎𝑥+𝑏𝑦+𝑐𝑦′=𝑎′𝑥+𝑏′𝑦+𝑐′ [𝑥1𝑦11𝑥2𝑦21⋮⋮⋮𝑥9𝑦91][𝑎𝑎′𝑏𝑏′𝑐𝑐′]=[𝑥1′𝑦…...
android git提交代码命令以及常见命令的使用
安装Git Ubuntu: sudo apt-get install git-core创建代码仓库: 配置身份: git config --global user.name "Tony" git confit --global user.email "tonygmail.com"查看身份: git config --global user.…...
类图的六大关系
类图中的六大关系包括:继承关系、实现关系、关联关系、聚合关系、组合关系和依赖关系。 1. 继承关系 继承是一种类与类之间的关系,表示一种泛化和特化的关系。子类继承父类的特性和行为。 class Animal {void eat() {System.out.println("This an…...
家政项目day2 需求分析(模拟入职后熟悉业务流程)
目录 1 项目主体介绍1.1 项目背景1.2 运营模式1.3 项目业务流程 2 运营端需求2.1 服务类型管理2.2 服务项目(服务)管理2.3 区域管理2.4 区域服务管理2.5 相关数据库表的管理2.6 设计工程结构2.7 测试接口(接口断点查看业务代码) 3…...
面试总结之:socket线路切换
"socket线路切换"通常指的是在网络通信过程中,根据当前网络状态或策略来动态更换数据传输路径的技术。这种技术可以提高通信的可靠性和性能。 在实际应用中,线路切换可能涉及到多种技术,例如: 负载均衡:根据每条路径的当前负载情况,动态地选择一条较为空闲的路…...
002 递归评论 mongodb websocket消息推送
文章目录 商品评论CommentController.javaComment.javaCommentServiceImpl.javaCommentRepository.javaCommentService.javaWebSocketConfig.javaWebSocketProcess.javaapplication.yamlproductReview.htmlindex.htmlindex.jsindex.css 订单评论EvaluateMapper.xmlEvaluateMapp…...
高开高走的续作,可不止《庆余年2》
说起最近霸屏的影视剧,莫过于《庆余年2》。火爆全网的讨论度总归是没有辜负观众们五年的等待,在五月的影视市场独占鳌头已成定局。张若昀、陈道明、李沁等一众演员稳定发挥,剧情节奏随着故事发展渐入佳境,评分一路高涨。 对影视作…...
uniapp android使用uni.chooseLocation,app云打包后,定位地址列表一直在加载中
复现BUG 1、自己生成一个证书 参考生成证书流程 2、使用刚生成证书的SHA1 ,重新创建一个高德key 高德开放平台地址 3、打包(打包的包名要与高德申请key所填的包名一致)...
详解http协议
什么是HTTP协议 定义 Http协议即超文本传送协议 (HTTP-Hypertext transfer protocol) 。 它定义了浏览器(即万维网客户进程)怎样向万维网服务器请求万维网文档,以及服务器怎样把文档传送给浏览器。从层次的角度看,HTTP是面向&am…...
台湾省军事演习路径规划:A*算法在复杂地形中的应用
❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣! 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航: LeetCode解锁100…...
OpenHarmony鸿蒙软总线使用mbedtls数据加密详解
OpenHarmony鸿蒙软总线子系统中使用了多种的加密技术,本篇介绍调用mbedtls的数据加密。 调用mbedtls加密的源码位于: foundation/communication/dsoftbus/adapter/common/mbedtls/softbus_adapter_crypto.c 这个源码单元,调用mbedTLS库实现了各种加密功能,包括AES-GCM加密…...
【JavaEE】Servlet
文章目录 一、Servlet 是什么二、如何创建Servlet程序1、创建项目2、引入依赖3、创建目录4、编写代码5、打包程序6、部署程序7、验证程序 一、Servlet 是什么 二、如何创建Servlet程序 1、创建项目 2、引入依赖 Maven 项目创建完后,会自动生成一个 pom.xml 的文…...
SpringBoot——整合Redis
目录 Redis 创建Commodity表 启动MySQL和Redis 新建一个SpringBoot项目 pom.xml application.properties Commodity实体类 ComMapper接口 ComService业务层接口 ComServiceImpl业务接口的实现类 ComController控制器 RedisConfig配置类 SpringbootRdisApplication启…...
2024全新Langchain大模型AI应用与多智能体实战开发
2024全新Langchain大模型AI应用与多智能体实战开发 LangChain 就是一个 LLM 编程框架,你想开发一个基于 LLM 应用,需要什么组件它都有,直接使用就行;甚至针对常规的应用流程,它利用链(LangChain中Chain的由来)这个概念…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
