当前位置: 首页 > news >正文

AI模型发展路径探析:开源与闭源,何者更胜一筹?

AI模型发展路径探析:开源与闭源,何者更胜一筹?

在当今快速发展的人工智能领域,AI模型成为推动技术创新和应用落地的关键。而评价一个AI模型“好不好”“有没有发展”,往往会引向一个重要话题:开源与闭源这两条发展路径。两者各有利弊,那么对于这两条路径,到底哪一种更值得我们认真探讨和投资呢?

开源路径:共建共享,创新源泉

开源AI模型指的是模型的源代码公开并允许用户自由访问、使用和修改。这种模式下,模型的发展依赖于全球开发者的共同努力,开放性促进了技术的快速迭代和创新。同时,开源模型具有更高的透明度和社区支持,为用户提供了更大的灵活性和定制性,能够更好地适应各种场景的需求。

闭源路径:技术壁垒,商业优势

闭源AI模型则是指模型的源代码被封闭,只有授权的企业或机构可以使用,这种模式下,企业往往能够在技术上形成一定的壁垒和商业优势。闭源模型通常伴随着专利保护和商业机密,保护企业的核心技术和商业利益,使其能够更好地掌控市场和盈利模式。

开源 vs. 闭源:究竟哪个更胜一筹?

从长远发展来看,开源模型更具优势。首先,开源模型能够吸引更多优秀的开发者和研究者参与其中,共同推动技术的进步和创新。其次,开源模型有助于建立更广泛的生态系统,促进产业发展和技术标准化。最后,开源模型更符合信息共享和开放合作的时代潮流,有利于构建更加包容和共赢的社会环境。

然而,闭源模型也不可忽视其在商业应用和盈利模式上的优势。特别在一些对安全性和商业敏感性要求较高的领域,闭源模型能够更好地保护企业的核心技术和商业机密,确保商业竞争力和稳健发展。

综上所述,开源和闭源各有其优势和适用场景,不能简单地对二者进行简单对立。在实际应用中,可以根据不同的需求和场景选择适合的发展路径,充分发挥开源与闭源的优势,推动AI模型的不断创新和发展。让我们共同关注AI模型的发展,探索更多可能性,助力人工智能技术的更加广泛应用和深入发展。

相关文章:

AI模型发展路径探析:开源与闭源,何者更胜一筹?

AI模型发展路径探析:开源与闭源,何者更胜一筹? 在当今快速发展的人工智能领域,AI模型成为推动技术创新和应用落地的关键。而评价一个AI模型“好不好”“有没有发展”,往往会引向一个重要话题:开源与闭源这…...

concurrency 并行编程

Goroutine go语言的魅力所在,高并发。 线程是操作系统调度的一种执行路径,用于在处理器执行我们在函数中编写的代码。一个进程从一个线程开始,即主线程,当该线程终止时,进程终止。这是因为主线程是应用程序的原点。然后…...

JavaScript如何让一个按钮的点击事件在完成之前禁用

在JavaScript中&#xff0c;要禁用一个按钮的点击事件直到某个操作完成&#xff0c;你可以将其点击事件用匿名函数的方式书写。 你可以将其在点击函数内设置为null来禁用按钮。 <button id"butto_n">点击抽奖</button><script>butto_n.onclick bu…...

透视App投放效果,Xinstall助力精准分析,让每一分投入都物超所值!

在移动互联网时代&#xff0c;App的推广与投放成为了每一个开发者和广告主必须面对的问题。然而&#xff0c;如何精准地掌握投放效果&#xff0c;让每一分投入都物超所值&#xff0c;却是一个令人头疼的难题。今天&#xff0c;我们就来谈谈如何通过Xinstall这个专业的App全渠道…...

【Linux杂货铺】进程通信

目录 &#x1f308; 前言&#x1f308; &#x1f4c1; 通信概念 &#x1f4c1; 通信发展阶段 &#x1f4c1; 通信方式 &#x1f4c1; 管道&#xff08;匿名管道&#xff09; &#x1f4c2; 接口 ​编辑&#x1f4c2; 使用fork来共享通道 &#x1f4c2; 管道读写规则 &…...

常用API(正则表达式、爬取、捕获分组和非捕获分组 )

1、正则表达式 练习——先爽一下正则表达式 正则表达式可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 需求&#xff1a;假如现在要求校验一个qq号码是否正确。 规则&#xff1a;6位及20位之内&#xff0c;0不能在开头&#xff0c;必须全部是数字…...

JVM学习-Class文件结构②

访问标识(access_flag) 在常量池后&#xff0c;紧跟着访问标记&#xff0c;标记使用两个字节表示&#xff0c;用于识别一些类或接口层次的访问信息&#xff0c;包括这个Class是类还是接口&#xff0c;是否定义为public类型&#xff0c;是否定义为abstract类型&#xff0c;如果…...

数据库连接项目

MySQL...

MySQL--InnoDB体系结构

目录 一、物理存储结构 二、表空间 1.数据表空间介绍 2.数据表空间迁移 3.共享表空间 4.临时表空间 5.undo表空间 三、InnoDB内存结构 1.innodb_buffer_pool 2.innodb_log_buffer 四、InnoDB 8.0结构图例 五、InnoDB重要参数 1.redo log刷新磁盘策略 2.刷盘方式&…...

ffplay 使用文档介绍

ffplay ffplay 是一个简单的媒体播放器,它是 FFmpeg 项目的一部分。FFmpeg 是一个广泛使用的多媒体框架,能够解码、编码、转码、复用、解复用、流化、过滤和播放几乎所有类型的媒体文件。 ffplay 主要用于测试和调试,因为它提供了一个命令行界面,可以方便地查看媒体文件的…...

四种网络IO模型

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;面经 ⛺️稳中求进&#xff0c;晒太阳 IO的定义 IO是计算机内存与外部设备之间拷贝数据的过程。CPU访问内存的速度远高于外部设备。因此CPU是先把外部设备的数据读取到内存&#xff0c;在…...

Mixed-precision计算原理(FP32+FP16)

原文&#xff1a; https://lightning.ai/pages/community/tutorial/accelerating-large-language-models-with-mixed-precision-techniques/ This approach allows for efficient training while maintaining the accuracy and stability of the neural network. In more det…...

Go 控制协程(goroutine)的并发数量

在使用协程并发处理某些任务时, 其并发数量往往因为各种因素的限制不能无限的增大. 例如网络请求、数据库查询等等。 从运行效率角度考虑&#xff0c;在相关服务可以负载的前提下&#xff08;限制最大并发数&#xff09;&#xff0c;尽可能高的并发。 在Go语言中&#xff0c;…...

web安全渗透测试十大常规项(一):web渗透测试之CSRF跨站请求伪造

渗透测试之CSRF跨站请求伪造 CSRF跨站请求伪造 CSRF跨站请求伪造...

YOLOv10尝鲜测试五分钟极简配置

最近清华大学团队又推出YOLOv10&#xff0c;真是好家伙了。 安装&#xff1a; pip install supervision githttps://github.com/THU-MIG/yolov10.git下载权重&#xff1a;https://github.com/THU-MIG/yolov10/releases/download/v1.0/yolov10n.pt 预测&#xff1a; from ult…...

社交媒体数据恢复:聊天宝

请注意&#xff0c;本教程仅针对聊天宝应用程序&#xff0c;而非其他聊天软件。以下是详细的步骤&#xff1a; 首先&#xff0c;请确保您已经登录了聊天宝应用程序。如果您尚未登录&#xff0c;请使用您的账号登录。 在聊天宝主界面&#xff0c;找到您希望恢复聊天记录的对话框…...

备战秋招—模拟版图面试题来了

随着暑期的脚步逐渐临近&#xff0c;电子工程和集成电路设计领域的毕业生们&#xff0c;也将迎来了另一个求职的黄金期——秋招。我们总说机会是留给有准备的人。对于有志于投身于模拟版图设计的学子们来说&#xff0c;为了在众多求职者中脱颖而出&#xff0c;充分备战模拟版图…...

CAN总线简介

1. CAN总线概述 1.1 CAN定义与历史背景 CAN&#xff0c;全称为Controller Area Network&#xff0c;是一种基于消息广播的串行通信协议。它最初由德国Bosch公司在1983年为汽车行业开发&#xff0c;目的是实现汽车内部电子控制单元&#xff08;ECUs&#xff09;之间的可靠通信。…...

【HSQL001】HiveSQL内置函数手册总结(更新中)

1.熟悉、梳理、总结下Hive SQL相关知识体系。 2.日常研发过程中使用较少&#xff0c;随着时间的推移&#xff0c;很快就忘得一干二净&#xff0c;所以梳理总结下&#xff0c;以备日常使用参考 3.欢迎批评指正&#xff0c;跪谢一键三连&#xff01; 文章目录 1.函数清单 1.函数清…...

Rust面试宝典第14题:旋转数组

题目 给定一个数组&#xff0c;将数组中的元素向右移动k个位置&#xff0c;其中k是非负数。要求如下&#xff1a; &#xff08;1&#xff09;尽可能想出更多的解决方案&#xff0c;至少有三种不同的方法可以解决这个问题。 &#xff08;2&#xff09;使用时间复杂度为O(n)和空间…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...