当前位置: 首页 > news >正文

K-means聚类算法详细介绍

目录

🍉简介

🍈K-means聚类模型详解

🍈K-means聚类的基本原理

🍈K-means聚类的算法步骤

🍈K-means聚类的优缺点

🍍优点

🍍缺点

🍈K-means聚类的应用场景

🍈K-means的改进和变体

🍉K-means聚类算法示例

🍈问题

🍍数据准备

🍍选择K值

🍍运行K-means聚类

🍍分析聚类结果

🍈完整代码实现

🍈代码解释


🍉简介

🍈K-means聚类模型详解

  • K-means聚类是一种常见且高效的无监督学习算法,用于将数据集分成K个簇(clusters)。本文将详细介绍K-means聚类的基本原理、算法步骤、优缺点以及应用场景。

🍈K-means聚类的基本原理

  • K-means聚类通过最小化样本到其所属簇中心的距离来实现数据的分组。具体而言,K-means的目标是将数据分成K个簇,并使每个簇中的数据点到其质心(centroid)的欧氏距离平方和最小。

假设我们有一个数据集${x_1, x_2, \ldots, x_n}$,其中每个数据点$x_i$是一个d维向量。我们需要将这些数据点分成K个簇${C_1, C_2, \ldots, C_K}$。K-means的优化目标可以表示为:

其中,$\mu_k$表示簇$C_k$的质心。

🍈K-means聚类的算法步骤

K-means聚类算法主要包括以下步骤:

  1. 初始化:随机选择K个数据点作为初始质心。
  2. 分配簇:对于数据集中的每个数据点,计算其到各个质心的距离,并将其分配到距离最近的质心所在的簇。
  3. 更新质心:对于每个簇,计算所有分配到该簇的数据点的平均值,更新该簇的质心。
  4. 重复:重复步骤2和3,直到质心不再发生显著变化,或者达到预设的迭代次数。

🍈K-means聚类的优缺点

🍍优点

  1. 简单易实现:K-means算法简单且容易理解和实现。
  2. 高效:时间复杂度为$O(n \cdot K \cdot t)$,其中n是数据点数量,K是簇的数量,t是迭代次数。
  3. 适用广泛:适用于很多实际问题,如图像分割、文档聚类等。

🍍缺点

  1. 需要预设K值:必须提前确定簇的数量K,且K值的选择对结果影响较大。
  2. 对初始质心敏感:初始质心的选择会影响最终结果,可能会陷入局部最优。
  3. 对噪声和异常值敏感:噪声和异常值可能会严重影响簇的结果。

🍈K-means聚类的应用场景

K-means聚类在实际中有广泛的应用,包括但不限于:

  1. 图像处理:如图像分割、颜色量化等。
  2. 市场营销:客户分群,根据消费行为将客户分成不同的群体。
  3. 文本处理:文档聚类,将相似的文档分在一起。
  4. 生物信息学:基因表达数据分析,将具有相似表达模式的基因分在一起。

🍈K-means的改进和变体

为了克服K-means的一些缺点,研究人员提出了许多改进和变体方法:

  1. K-means++:通过改进质心初始化过程,减少算法陷入局部最优的可能性。
  2. Mini-batch K-means:使用小批量数据进行训练,适用于大规模数据集。
  3. 谱聚类:结合图论和K-means,适用于非凸形状的簇。

🍉K-means聚类算法示例

  • 为了更好地理解K-means聚类算法在现实生活中的应用,我们将以一个具体的示例来演示其使用过程和效果。我们将使用K-means聚类算法对客户进行分群,以帮助企业进行市场营销策略的制定。

🍈问题

假设我们是一家电子商务公司,希望通过分析客户的购买行为,将客户分成不同的群体,以便进行有针对性的市场营销。我们拥有以下客户数据集:

  • 客户ID
  • 年龄
  • 年收入(以美元计)
  • 年消费额(以美元计)

🍍数据准备

首先,我们需要对数据进行预处理和标准化,因为不同特征的量纲可能会影响聚类效果。

import pandas as pd
from sklearn.preprocessing import StandardScaler# 创建示例数据集
data = {'CustomerID': [1, 2, 3, 4, 5],'Age': [25, 34, 45, 23, 35],'Annual Income (k$)': [15, 20, 35, 60, 45],'Spending Score (1-100)': [39, 81, 6, 77, 40]
}
df = pd.DataFrame(data)# 标准化特征
scaler = StandardScaler()
df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.fit_transform(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])

🍍选择K值

通常情况下,选择K值可以通过“肘部法则”来确定。我们绘制不同K值下的SSE(误差平方和)曲线,选择拐点作为K值。

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 计算不同K值下的SSE
sse = []
for k in range(1, 11):kmeans = KMeans(n_clusters=k, random_state=0)kmeans.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])sse.append(kmeans.inertia_)# 绘制肘部法则图
plt.figure(figsize=(8, 5))
plt.plot(range(1, 11), sse, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()

假设通过肘部法则确定K值为3。

🍍运行K-means聚类

使用K-means算法对客户进行分群。

# 运行K-means聚类
kmeans = KMeans(n_clusters=3, random_state=0)
df['Cluster'] = kmeans.fit_predict(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 查看聚类结果
print(df)

🍍分析聚类结果

通过可视化和统计分析,我们可以更好地理解每个簇的特征。

# 可视化聚类结果
plt.figure(figsize=(8, 5))
plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], c=df['Cluster'], cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s=300, c='red')
plt.title('Customer Segments')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()

此外,我们可以查看每个簇的中心和簇内数据点的分布情况:

# 查看每个簇的中心
centroids = kmeans.cluster_centers_
print("Cluster Centers:\n", centroids)# 查看每个簇的样本数量
print(df['Cluster'].value_counts())

🍈完整代码实现

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 创建示例数据集
data = {'CustomerID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],'Age': [25, 34, 45, 23, 35, 64, 24, 29, 33, 55],'Annual Income (k$)': [15, 20, 35, 60, 45, 70, 18, 24, 50, 40],'Spending Score (1-100)': [39, 81, 6, 77, 40, 80, 20, 60, 54, 50]
}
df = pd.DataFrame(data)# 标准化特征
scaler = StandardScaler()
df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.fit_transform(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 计算不同K值下的SSE
sse = []
for k in range(1, 11):kmeans = KMeans(n_clusters=k, random_state=0)kmeans.fit(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])sse.append(kmeans.inertia_)# 绘制肘部法则图
plt.figure(figsize=(8, 5))
plt.plot(range(1, 11), sse, marker='o')
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()# 根据肘部法则选择K值为3
k = 3# 运行K-means聚类
kmeans = KMeans(n_clusters=k, random_state=0)
df['Cluster'] = kmeans.fit_predict(df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])# 查看聚类结果
print(df)# 可视化聚类结果
plt.figure(figsize=(8, 5))
plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], c=df['Cluster'], cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], s=300, c='red', marker='x')
plt.title('Customer Segments')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()# 查看每个簇的中心
centroids = kmeans.cluster_centers_
print("Cluster Centers:\n", centroids)# 查看每个簇的样本数量
print(df['Cluster'].value_counts())

🍈代码解释

🍍导入必要的库

  1. pandas用于数据处理。
  2. numpy用于数值计算。
  3. StandardScaler用于标准化数据。
  4. KMeans用于K-means聚类。
  5. matplotlib用于数据可视化。

🍍创建示例数据集

  • 包含客户ID、年龄、年收入和消费评分。

🍍标准化特征

  • 使用StandardScaler将特征缩放到相同的尺度,以提高聚类效果。

🍍选择K值

  1. 使用肘部法则,通过计算不同K值下的SSE(误差平方和)来确定最佳K值。
  2. 绘制SSE随K值变化的曲线,选择拐点作为最佳K值。

🍍运行K-means聚类

  1. 使用确定的K值运行K-means算法,对客户进行分群。
  2. 将分群结果添加到数据集中。

🍍可视化聚类结果

  • 绘制聚类结果的散点图,使用不同颜色表示不同的簇,并标出每个簇的质心。

🍍查看聚类结果

  • 打印每个簇的中心坐标和每个簇的样本数量,以更好地理解每个簇的特征。

 

希望这些能对刚学习算法的同学们提供些帮助哦!!!

相关文章:

K-means聚类算法详细介绍

目录 🍉简介 🍈K-means聚类模型详解 🍈K-means聚类的基本原理 🍈K-means聚类的算法步骤 🍈K-means聚类的优缺点 🍍优点 🍍缺点 🍈K-means聚类的应用场景 🍈K-mea…...

SAP FS00如何导出会计总账科目表

输入T-code : S_ALR_87012333 根据‘FS00’中找到的总账科目,进行筛选执行 点击左上角的列表菜单,选择‘电子表格’导出即可...

ROS参数服务器

一、介绍 参数服务器是用于存储和检索参数的分布式多机器人配置系统,它允许节点动态地获取参数值。 在ROS中,参数服务器是一种用于存储和检索参数的分布式多机器人配置系统。它允许节点动态地获取参数值,并提供了一种方便的方式来管理和共享配…...

QCC---DFU升级变更设备名和地址

QCC---DFU升级变更设备名和地址 这个很多人碰到这个疑问,升级了改不了设备名和地址 /******************************************************************************* Copyright (c) 2018 Qualcomm Technologies International, Ltd. FILE NAME sink_dfu_ps.c DESCRIPT…...

[力扣题解] 695. 岛屿的最大面积

题目&#xff1a;695. 岛屿的最大面积 思路 代码 深度优先搜索 // 深度搜索 class Solution { private:int area_max 0;int dir[4][2] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};void dfs(vector<vector<int>>& grid, vector<vector<bool>>& …...

AI模型发展路径探析:开源与闭源,何者更胜一筹?

AI模型发展路径探析&#xff1a;开源与闭源&#xff0c;何者更胜一筹&#xff1f; 在当今快速发展的人工智能领域&#xff0c;AI模型成为推动技术创新和应用落地的关键。而评价一个AI模型“好不好”“有没有发展”&#xff0c;往往会引向一个重要话题&#xff1a;开源与闭源这…...

concurrency 并行编程

Goroutine go语言的魅力所在&#xff0c;高并发。 线程是操作系统调度的一种执行路径&#xff0c;用于在处理器执行我们在函数中编写的代码。一个进程从一个线程开始&#xff0c;即主线程&#xff0c;当该线程终止时&#xff0c;进程终止。这是因为主线程是应用程序的原点。然后…...

JavaScript如何让一个按钮的点击事件在完成之前禁用

在JavaScript中&#xff0c;要禁用一个按钮的点击事件直到某个操作完成&#xff0c;你可以将其点击事件用匿名函数的方式书写。 你可以将其在点击函数内设置为null来禁用按钮。 <button id"butto_n">点击抽奖</button><script>butto_n.onclick bu…...

透视App投放效果,Xinstall助力精准分析,让每一分投入都物超所值!

在移动互联网时代&#xff0c;App的推广与投放成为了每一个开发者和广告主必须面对的问题。然而&#xff0c;如何精准地掌握投放效果&#xff0c;让每一分投入都物超所值&#xff0c;却是一个令人头疼的难题。今天&#xff0c;我们就来谈谈如何通过Xinstall这个专业的App全渠道…...

【Linux杂货铺】进程通信

目录 &#x1f308; 前言&#x1f308; &#x1f4c1; 通信概念 &#x1f4c1; 通信发展阶段 &#x1f4c1; 通信方式 &#x1f4c1; 管道&#xff08;匿名管道&#xff09; &#x1f4c2; 接口 ​编辑&#x1f4c2; 使用fork来共享通道 &#x1f4c2; 管道读写规则 &…...

常用API(正则表达式、爬取、捕获分组和非捕获分组 )

1、正则表达式 练习——先爽一下正则表达式 正则表达式可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 需求&#xff1a;假如现在要求校验一个qq号码是否正确。 规则&#xff1a;6位及20位之内&#xff0c;0不能在开头&#xff0c;必须全部是数字…...

JVM学习-Class文件结构②

访问标识(access_flag) 在常量池后&#xff0c;紧跟着访问标记&#xff0c;标记使用两个字节表示&#xff0c;用于识别一些类或接口层次的访问信息&#xff0c;包括这个Class是类还是接口&#xff0c;是否定义为public类型&#xff0c;是否定义为abstract类型&#xff0c;如果…...

数据库连接项目

MySQL...

MySQL--InnoDB体系结构

目录 一、物理存储结构 二、表空间 1.数据表空间介绍 2.数据表空间迁移 3.共享表空间 4.临时表空间 5.undo表空间 三、InnoDB内存结构 1.innodb_buffer_pool 2.innodb_log_buffer 四、InnoDB 8.0结构图例 五、InnoDB重要参数 1.redo log刷新磁盘策略 2.刷盘方式&…...

ffplay 使用文档介绍

ffplay ffplay 是一个简单的媒体播放器,它是 FFmpeg 项目的一部分。FFmpeg 是一个广泛使用的多媒体框架,能够解码、编码、转码、复用、解复用、流化、过滤和播放几乎所有类型的媒体文件。 ffplay 主要用于测试和调试,因为它提供了一个命令行界面,可以方便地查看媒体文件的…...

四种网络IO模型

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;面经 ⛺️稳中求进&#xff0c;晒太阳 IO的定义 IO是计算机内存与外部设备之间拷贝数据的过程。CPU访问内存的速度远高于外部设备。因此CPU是先把外部设备的数据读取到内存&#xff0c;在…...

Mixed-precision计算原理(FP32+FP16)

原文&#xff1a; https://lightning.ai/pages/community/tutorial/accelerating-large-language-models-with-mixed-precision-techniques/ This approach allows for efficient training while maintaining the accuracy and stability of the neural network. In more det…...

Go 控制协程(goroutine)的并发数量

在使用协程并发处理某些任务时, 其并发数量往往因为各种因素的限制不能无限的增大. 例如网络请求、数据库查询等等。 从运行效率角度考虑&#xff0c;在相关服务可以负载的前提下&#xff08;限制最大并发数&#xff09;&#xff0c;尽可能高的并发。 在Go语言中&#xff0c;…...

web安全渗透测试十大常规项(一):web渗透测试之CSRF跨站请求伪造

渗透测试之CSRF跨站请求伪造 CSRF跨站请求伪造 CSRF跨站请求伪造...

YOLOv10尝鲜测试五分钟极简配置

最近清华大学团队又推出YOLOv10&#xff0c;真是好家伙了。 安装&#xff1a; pip install supervision githttps://github.com/THU-MIG/yolov10.git下载权重&#xff1a;https://github.com/THU-MIG/yolov10/releases/download/v1.0/yolov10n.pt 预测&#xff1a; from ult…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

轻量级Docker管理工具Docker Switchboard

简介 什么是 Docker Switchboard &#xff1f; Docker Switchboard 是一个轻量级的 Web 应用程序&#xff0c;用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器&#xff0c;使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...