当前位置: 首页 > news >正文

VAE-变分自编码器(Variational Autoencoder,VAE)

变分自编码器(Variational Autoencoder,VAE)是一种生成模型,结合了概率图模型与神经网络技术,广泛应用于数据生成、表示学习和数据压缩等领域。以下是对VAE的详细解释和理解:

基本概念

1. 自编码器(Autoencoder)

自编码器是一种无监督学习模型,通常用于降维和特征提取。它由两个主要部分组成:

  • 编码器(Encoder):将输入数据映射到一个低维隐变量空间。
  • 解码器(Decoder):从低维隐变量空间重建输入数据。
    自编码器的目标是使重建的数据尽可能与原始输入数据相似。

2. 变分自编码器(VAE)

VAE 是自编码器的一种扩展,它通过引入概率分布的概念来对隐变量空间进行建模。VAE 的目标不仅是重建输入数据,还要使隐变量遵循某种已知的概率分布(通常是标准正态分布)。这样可以通过采样隐变量来生成新数据。

VAE的工作原理

  1. 编码器
    在VAE中,编码器不是直接输出一个隐变量,而是输出隐变量的参数(均值 μ 和标准差 σ)。这些参数定义了隐变量的一个概率分布,通常假设为正态分布 N(μ, σ^2)。

  2. 重新参数化技巧(Reparameterization Trick)
    为了使模型能够通过梯度下降进行训练,VAE引入了重新参数化技巧。通过采样一个标准正态分布的变量 ε ~ N(0, 1),然后进行线性变换得到隐变量 z:
    在这里插入图片描述

这样,采样操作变成了一个确定性的操作,允许梯度反向传播。

  1. 解码器
    解码器接受从上述分布中采样的隐变量 z,并尝试重建输入数据。解码器的目标是最大化重建数据的概率。

损失函数

VAE 的损失函数由两部分组成:

  • 重构损失(Reconstruction Loss):衡量重建数据与原始数据的相似度,通常使用均方误差(MSE)或交叉熵损失。 KL

  • 散度(KL Divergence):衡量隐变量分布与标准正态分布的差异。通过最小化KL散度,使隐变量分布接近标准正态分布。

综合起来,VAE的损失函数为:

在这里插入图片描述

VAE的优点

  1. 生成能力:可以从隐变量空间采样生成新数据,具有良好的生成能力。
  2. 隐变量解释性:通过将隐变量空间约束为标准正态分布,隐变量具有一定的解释性和可操作性。
  3. 无监督学习:VAE是一种无监督学习模型,不需要标签数据即可进行训练。

VAE的缺点

  1. **生成质量有限:**生成数据的质量有时不如GAN(生成对抗网络)等其他生成模型。
  2. **训练复杂:**VAE的训练涉及到复杂的概率推断和优化过程。

总结

变分自编码器通过引入概率分布和重新参数化技巧,使得隐变量具有良好的生成能力和解释性。其核心思想是在保持重建数据质量的同时,使隐变量遵循标准正态分布,从而实现数据生成和表示学习。尽管存在一些缺点,但VAE在许多应用场景中仍然表现出色,并为生成模型的研究提供了重要的理论基础。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable# 定义VAE模型
class VAE(nn.Module):def __init__(self, input_dim, hidden_dim, latent_dim):super(VAE, self).__init__()self.fc1 = nn.Linear(input_dim, hidden_dim)self.fc21 = nn.Linear(hidden_dim, latent_dim)self.fc22 = nn.Linear(hidden_dim, latent_dim)self.fc3 = nn.Linear(latent_dim, hidden_dim)self.fc4 = nn.Linear(hidden_dim, input_dim)def encode(self, x):h1 = F.relu(self.fc1(x))return self.fc21(h1), self.fc22(h1)def reparameterize(self, mu, logvar):std = torch.exp(0.5*logvar)eps = torch.randn_like(std)return mu + eps*stddef decode(self, z):h3 = F.relu(self.fc3(z))return torch.sigmoid(self.fc4(h3))def forward(self, x):mu, logvar = self.encode(x.view(-1, 784))z = self.reparameterize(mu, logvar)return self.decode(z), mu, logvar# 定义损失函数
def loss_function(recon_x, x, mu, logvar):BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())return BCE + KLD# 加载MNIST数据集
train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.ToTensor()),batch_size=128, shuffle=True)# 初始化模型
vae = VAE(input_dim=784, hidden_dim=512, latent_dim=20)
optimizer = optim.Adam(vae.parameters(), lr=1e-3)# 训练模型
def train(epoch):vae.train()train_loss = 0for batch_idx, (data, _) in enumerate(train_loader):optimizer.zero_grad()recon_batch, mu, logvar = vae(data)loss = loss_function(recon_batch, data, mu, logvar)loss.backward()train_loss += loss.item()optimizer.step()if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader),loss.item() / len(data)))print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(train_loader.dataset)))# 开始训练
for epoch in range(1, 11):train(epoch)

代码说明

  • 编码器和解码器:编码器将输入图像编码为潜在空间的均值和对数方差,解码器从潜在变量生成重建的图像。
  • Sampling层:这是实现重参数化技巧的关键部分,将均值和对数方差转换为潜在变量。
  • VAE类:组合编码器和解码器,并实现自定义训练步骤,包括计算重建损失和KL散度损失。
  • 数据准备和训练:加载MNIST数据集,对数据进行预处理,然后训练VAE模型。
    这个示例展示了一个简单的VAE模型。根据具体的应用需求,你可能需要调整网络结构和超参数。

相关文章:

VAE-变分自编码器(Variational Autoencoder,VAE)

变分自编码器(Variational Autoencoder,VAE)是一种生成模型,结合了概率图模型与神经网络技术,广泛应用于数据生成、表示学习和数据压缩等领域。以下是对VAE的详细解释和理解: 基本概念 1. 自编码器&#…...

Android Room 使用模版

文章目录 一、配置依赖 plugins {id kotlin-kapt }android {compileOptions {sourceCompatibility JavaVersion.VERSION_17targetCompatibility JavaVersion.VERSION_17}kotlinOptions {jvmTarget 17} }dependencies {implementation("androidx.room:room-runtime:2.4.2&…...

Linux/Ubuntu 中安装 ZeroTier,实现内网穿透,2分钟搞定

相信很多人都有远程连接家中设备的需求,如远程连接家中的NAS、Windows等服务,所以会涉及到一个内网穿透工具的使用,如果没有公网IP的情况下,推荐大家使用ZeroTier,这是一款强大的内网穿透工具。 mac和windows版的操作…...

java技术:oauth2协议

目录 一、黑马程序员Java进阶教程快速入门Spring Security OAuth2.0认证授权详解 1、oauth服务 WebSecurityConfig TokenConfig AuthorizationServer 改写密码校验逻辑实现类 2、oauth2支持的四种方式: 3、oauth2授权 ResouceServerConfig TokenConfig 4、…...

Java 18 新特性详解

Java 18 新特性详解 Java 18 作为 Oracle 推出的又一重要版本,继续秉持着 Java 平台“创新但不破坏”的原则,带来了多项旨在提升开发效率、性能和安全性的新特性。本篇文章将深入解析 Java 18 引入的主要特性,并探讨它们如何影响开发者的工作…...

【css3】06-css3新特性之网页布局篇

目录 伸缩布局或者弹性布局【响应式布局】 1 设置父元素为伸缩盒子 2 设置伸缩盒子主轴方向 3 设置元素在主轴的对齐方式 4 设置元素在侧轴的对齐方式 5 设置元素是否换行显示 6 设置元素换行后的对齐方式 7 效果测试原码 伸缩布局或者弹性布局【响应式布局】 1 设置父元…...

【开源】大学生竞赛管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、系统介绍 学生管理模块 教师管理模块 竞赛信息模块 竞赛报名模块 二、系统截图 三、核心代码 一、系统介绍 基于Vue.js和SpringBoot的大学生竞赛管理系统,分为管理后台和用户网页端,可以给管理员、学生和教师角色使用,包括学…...

跨境选品师不是神话:普通人也能轻松掌握,开启全球贸易新篇章!

随着互联网技术的飞速发展,跨境电商行业已成为全球经济的新增长点。在这个背景下,一个新兴的职业——跨境选品师,逐渐走进了人们的视野。那么,跨境选品师究竟是做什么的?普通人又该如何成为优秀的跨境选品师呢? 一、跨境选品师的…...

前缀和,差分算法理解

前缀和是什么: 前缀和指一个数组的某下标之前的所有数组元素的和(包含其自身)。前缀和分为一维前缀和,以及二维前缀和。前缀和是一种重要的预处理,能够降低算法的时间复杂度 说个人话就是比如有一个数组: …...

ubuntu/部分docker容器无法访问https站点

ubuntu/部分docker容器无法访问https站点 解决方案 解决方案 默认的系统内可能没有安装根证书,需要安装一下 apt install ca-certificates如果官方源比较慢,可以换为国内源,但是不要使用https...

【MySQL】库的基础操作

🌎库的操作 文章目录: 库的操作 创建删除数据库 数据库编码集和校验集 数据库的增删查改       数据库查找       数据库修改 备份和恢复 查看数据库连接情况 总结 前言:   数据库操作是软件开发中不可或缺的一部分&#xff0…...

嵌入式0基础开始学习 ⅠC语言(2)运算符与表达式

1.运算符 什么是运算符? 用来进来某种运算的符号 如: - * / (取余,取模) a,几目运算符 根据其操作数的不同 单目运算符 该运算符…...

汇编语言(一)

寄存器:cpu中可以储存数据的器件(AX,BX) 汇编语言的组成:1.汇编指令 2.伪指令 3.其他符号 存储器:cpu,传入指令和数据,加以运算。(内存) 指令和数据&#…...

2010-2022年各省新质生产力数据(含原始数据+测算代码+计算结果)

2010-2022年各省新质生产力数据(含原始数据测算代码计算结果) 1、时间:2010-2022年 2、范围:31省 3、指标:gdp(亿元)、在岗职工工资:元、第三产业就业比重、人均受教育平均年限、…...

需求分析部分图形工具

描述复杂的事物时,图形远比文字叙述优越得多,它形象直观容易理解。前面已经介绍了用于建立功能模型的数据流图、用于建立数据模型的实体-联系图和用于建立行为模型的状态图,本节再简要地介绍在需求分析阶段可能用到的另外3种图形工具。 1 层次方框图 层次方框图用树形结…...

ML307R OpenCPU GPIO使用

一、GPIO使用流程图 二、函数介绍 三、GPIO 点亮LED 四、代码下载地址 一、GPIO使用流程图 这个图是官网找到的,ML307R GPIO引脚电平默认为1.8V,需注意和外部电路的电平匹配,具体可参考《ML307R_硬件设计手册_OpenCPU版本适用.pdf》中的描…...

python基于深度学习的聊天机器人设计

python基于深度学习的聊天机器人设计 开发语言:Python 数据库:MySQL所用到的知识:Django框架工具:pycharm、Navicat、Maven 系统功能实现 登录注册功能 用户在没有登录自己的用户名之前只能浏览本网站的首页,想要使用其他功能都…...

Golang设计模式(四):观察者模式

观察者模式 什么是观察者 观察者模式(Observer Pattern):定义对象之间的一种一对多依赖关系,使得每当一个对象状态发生改变时,其相关依赖对象皆得到通知并被自动更新。观察者模式的别名包括发布-订阅(Publish/Subscribe&#xf…...

huggingface 笔记:查看GPU占用情况

0 准备部分 0.1 创建虚拟数据 import numpy as npfrom datasets import Datasetseq_len, dataset_size 512, 512 dummy_data {"input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),"labels": np.random.randint(0, 1, (dataset_size…...

JavaSE 学习记录

1. Java 内存 2. this VS super this和super是两个关键字,用于引用当前对象和其父类对象 this 关键字: this 关键字用于引用当前对象,即调用该关键字的方法所属的对象。 主要用途包括: 在类的实例方法中,通过 this …...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...

32位寻址与64位寻址

32位寻址与64位寻址 32位寻址是什么&#xff1f; 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元&#xff08;地址&#xff09;&#xff0c;其核心含义与能力如下&#xff1a; 1. 核心定义 地址位宽&#xff1a;CPU或内存控制器用32位…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...