当前位置: 首页 > news >正文

YOLOv8初体验:检测、跟踪、模型部署

安装

YOLOv8有两种安装方式,一种是直接用pip命令安装:

pip install ultralytics

另外一种是通过源码安装:

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e '.[dev]'

安装完成后就可以通过yolo命令在命令行进行使用了。

目标检测

使用YOLOv8进行目标检测,可以使用下面的命令:

yolo task=detect mode=predict model=yolov8n.pt source=ultralytics/assets/bus.jpg imgsz=640 show=True save=True

如果模型权重不存在,程序会自动从GitHub中下载。如果对命令行的参数不了解,可以参考官方文档的说明,也可以直接看ultralytics代码仓库中的ultralytics/yolo/cfg/default.yaml文件,里面有所有参数的说明和默认值。

上面的命令运行成功后,带检测结果的图片被保存到runs/detect/predict目录下,如下图所示:

跑视频的效果可以看下面这个视频:

用TensorRT部署的YOLOv8模型,来看看效果怎么样

目标跟踪

YOLOv8目前支持BoT-SORTByteTrack两种多目标跟踪算法,默认的目标跟踪算法为BoT-SORT,使用方式如下:

yolo track model=yolov8n.pt source=test.avi show=True save=True

如果要使用ByteTrack跟踪算法,可以添加命令行参数tracker=bytetrack.yaml

下面的视频是使用BoT-SORT算法的跟踪效果,效果还是不错的。

YOLOv8+BoT-SORT目标检测与跟踪

模型部署

如果要用TensorRT部署YOLOv8,需要先使用下面的命令将模型导出为onnx格式:

yolo export model=yolov8n.pt format=onnx opset=12 

YOLOv83个检测头一共有80x80+40x40+20x20=8400个输出单元格,每个单元格包含x,y,w,h4项再加80个类别的置信度总共84项内容,所以通过上面命令导出的onnx模型的输出维度为1x84x8400

这样的通道排列顺序有个问题,那就是后处理的时候会造成内存访问不连续。为了解决这个问题,我们可以修改一下代码,具体做法是把ultralytics/nn/modules.py文件中的421行做如下修改,交换一下张量y的通道顺序:

修改代码后需要执行前面的安装命令pip install -e '.[dev]'使代码生效。这样修改后再执行上面的模型导出命令,模型的输出维度变为1x8400x84

导出onnx模型后,就可以用TensorRT进行部署了。如何使用TensorRTC++接口部署ONNX模型可以参考我之前给【自动驾驶之心】公众号写的这篇文章:手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署。

YOLOv5相比,部署YOLOv8的不同之处就是做后处理解析模型输出结果的时候不需要去解析objectness这项内容了,其他都类似。

使用TensorRT框架在我的GeForce GTX 1650 Ti显卡上部署YOLOv8的结果如下:

模型输入尺寸模型精度耗时(ms)
yolov8n.onnx640x640FP327
yolov8s.onnx640x640FP3212
yolov8m.onnx640x640FP3229
yolov8l.onnx640x640FP3252
yolov8x.onnx640x640FP3283
yolov8n.onnx640x640FP164
yolov8s.onnx640x640FP167
yolov8m.onnx640x640FP1614
yolov8l.onnx640x640FP1625
yolov8x.onnx640x640FP1640

YOLOv5测试结果:

模型输入尺寸模型精度耗时(ms)
yolov5n.onnx640x640FP327
yolov5s.onnx640x640FP3210
yolov5m.onnx640x640FP3221
yolov5l.onnx640x640FP3241
yolov5x.onnx640x640FP3276
yolov5n.onnx640x640FP165
yolov5s.onnx640x640FP166
yolov5m.onnx640x640FP1611
yolov5l.onnx640x640FP1621
yolov5x.onnx640x640FP1638

从上面的测试结果来看,YOLOv8YOLOv5稍微慢一点点。

相关文章:

YOLOv8初体验:检测、跟踪、模型部署

安装 YOLOv8有两种安装方式,一种是直接用pip命令安装: pip install ultralytics另外一种是通过源码安装: git clone https://github.com/ultralytics/ultralytics cd ultralytics pip install -e .[dev]安装完成后就可以通过yolo命令在命令…...

Vue 监听(watch handler)

普通监听 缺点:不能深度监听(对象属性的改变),刷新或首次加载不能执行。 watch: { carts: function (val, oldVal) { console.log(new: %s, old: %s, val, oldVal) } } 高级监…...

前端代码质量-圈复杂度原理和实践

1. 导读 你们是否也有过下面的想法? 重构一个项目还不如新开发一个项目…这代码是谁写的,我真想… 你们的项目中是否也存在下面的问题? 单个项目也越来越庞大,团队成员代码风格不一致,无法对整体的代码质量做全面的…...

汽车微控制器芯片F280039CPZRQ1、F280039CSPM、F280039CSPN规格参数

F280039CPZRQ1、F280039CSPM、F280039CSPN是C2000实时微控制器系列中的一款器件。C2000微控制器是可扩展、超低延迟器件,旨在提高电力电子设备的效率,包括但不限于:高功率密度、高开关频率,并支持使用 GaN和SiC技术。F280039CPZRQ…...

禾观科技三面经历

智力题 一天中时针和分钟重合多少次 由于时针1分钟旋转的圆心角度数为0.5度(30/60min) 分针1分钟旋转的圆心角度为6度(30/5min) 当两针第一次重合时后到第二次重合,分针比时针多旋转过的圆心角度数为360度。(快的比慢的多跑一圈,也就是360度) 这类问题实际上是分针追时…...

Spring Boot 实现接口幂等性的 4 种方案

一、什么是幂等性 幂等是一个数学与计算机学概念,在数学中某一元运算为幂等时,其作用在任一元素两次后会和其作用一次的结果相同。 在计算机中编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数或幂…...

Android Studio开发APP

1.下载Android Studio 官网下载:Android Studio for Window ... 百度云下载:android-studio-bundle-141.1903250-windows.exe Android Studio 是谷歌推出的一个Android集成开发工具,基于IntelliJ IDEA. 类似 Eclipse ADT,Android Studio 提供了集成的 Android 开发工具用…...

Spring之实例化Bean _ @Resource和@Autowired实现原理(3)

目录 1. 搜集注解信息 applyMergedBeanDefinitionPostProcessor(*) 2. 将实例化的Bean放入3级缓存中 addSingletonFactory(***)为循环依赖做准备 3. 根…...

华为HCIE学习之Openstack Cinder组件(cinder对接glusterfs)

文章目录一、MQ的作用二、cinder架构图三、各组件的作用四、cinder对接glusterfs一、MQ的作用 服务内各组件交互通过MQ进行 二、cinder架构图 IET,Linux用软件做存储,CNA识别过去就是IETTGT,物理存储,CNA识别过去就是TGT 三、…...

关于Go语言的底层,你想知道的都在这里!

文章目录1. GoLang语言1.1 Slice1.2 Map1.3 Channel1.4 Goroutine1.5 GMP调度1.6 垃圾回收机制1.7 其他知识点2. Web框架Gin和微服务框架Micro2.1 Gin框架2.2 Micro框架2.3 Viper2.4 Swagger2.5 Zap2.6 JWT文章字数大约1.95万字,阅读大概需要65分钟,建议…...

每日一问-ChapGPT-20230308-关于技术与思考的问题

文章目录每日一问-ChapGPT系列起因每日一问-ChapGPT-20230308-关于技术与思考的问题matplotlib_venn 中 venn2函数调用时,subsets传入A list (or a tuple) containing two set objects,怎么理解plt.pie() 包含哪些参数,以及每个参数的意义mat…...

Oracle表分区的创建、新增、拆分

Oracle中为了方便管理、查询数据当数据量大于500w或者2G时最好用分区表,常见的一种是使用时间作为分区。 分区表添加新的分区有 2 种情况: (1) 原分区里边界是 maxvalue 或者 default。 这种情况下,我们需要把边界分区 drop 掉,加…...

如何快速升级Java 8 到Java11

老板让我把一个项目从 Java 8 迁移到 Java 11,我该怎么办呢? 最简单的办法,当然是直接强行升级,遇到一个错就改一个错,别看它 low,但是对于一个小型且非核心的项目来说,已经足够了。 当然,对于比较重要的项目,且代码行数不少的情况,最标准的姿势就是对着官方文档进…...

内卷把同事逼成了“扫地僧”,把Git上所有面试题整理成足足24W字Java八股文

互联网大厂更多的是看重学历还是技术?毫无疑问,是技术,技术水平相近的情况下,肯定学历高/好的会优先一点,这点大家肯定都理解。说实话,学弟学妹们找工作难,作为面试官招人也难呀!&am…...

【计组】主存储器有关知识梳理

一、主存储器 主存储器可以直接和CPU进行通信,但是只能保存临时数据,在断电后数据就消失。还有一个特点是,主存储器的容量小,速度快,造价高。 1.构成 2.主存中存储体的构造 最小的存储单位是存储元,存储元…...

QT对象树

对象模型(对象树) 在Qt中创建对象的时候会提供一个Parent对象指针,下面来解释这个parent到底是干什么的。 l QObject是以对象树的形式组织起来的。 n 当你创建一个QObject对象时,会看到QObject的构造函数接收一个QObject指针作…...

什么是B+树

B树是一种树数据结构。B树索引是B树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引。 先来了解一下什么是索引? 一、索引 数据都是存储在硬盘上的,查询数据不可避免的需要进行IO操作。 索引是一种数据结构&#xff0c…...

【Unity游戏破解】外挂原理分析

文章目录认识unity打包目录结构游戏逆向流程Unity游戏攻击面可被攻击原因mono的打包建议方案锁血飞天无限金币攻击力翻倍以上统称内存挂透视自瞄压枪瞬移内购破解Unity游戏防御开发时注意数据安全接入第三方反作弊系统外挂检测思路狠人自爆实战查看目录结构用il2cpp dumper例子…...

windows 关闭指定端口进程

1、首先打开cmd 注意要用管理员身份打开cmd,否则可能出现无权访问的提示。 2、输入以下命令(以端口号9098为例) 查看端口信息 netstat -ano | findstr 90983、输入以下命令关闭这个进程 taskkill -PID 39716 -F...

虚拟化系列教程:创建 KVM 虚机的几种方式

虚拟化系列教程:创建虚拟机的几种方式[TOC](虚拟化系列教程:创建虚拟机的几种方式)创建 KVM 虚机的几种方式使用 virt-install 命令创建虚拟机参数说明一般选项安装方法存储配置网络配置其它常用的选项图形配置设备选项虚拟化平台其它创建虚拟机的操作演…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...