JVM堆与堆调优以及出现OOM如何排查
调优的位置——堆
Heap,一个JVM只有一个堆内存,堆内存的大小是可以调节的。
类加载器读取了类文件后,一般会把什么东西放到堆中?类,方法,常量,变量~,保存我们所有引用类型的真实对象;
堆内存中还要细分为三个区域:
1.新生区(0区/1区):类诞生和成长的地方,甚至死亡。其中的伊甸园区,是所有的new对象发生的地方。
2.养老区:从新生区经过GC之后存活下来的对象进入养老区
3.永久区:这个区域常驻内存的。用来存放DK自身携带的Class对象。Interface元数据,存储的是Java运行时的一些环境或类信息,这个区域不存在垃圾回收!关闭VM虚拟就会释放这个区域的内存
在堆中主要存放加载的Class类级对象如class本身,method,field等等
幸存区0和1在堆内存中是一个动态变化的情况他是伊甸园区和养老区之间的一个过渡,顾名思义无法幸存的对象会被“kill”,GC垃圾回收主要在新生区中的伊甸园区和养老区进行。回收的方式分为轻GC与重GC,其中轻GC主要存在于新生区,只有当进入老年区的垃圾对象超过限额才会触发重GC(full GC),该操作主要存在于养老区。
在开发中可能遇到OOM的问题,表示内存不够,这个内存也就是JVM的堆内存,比如下面这个例子:
Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
99%的对象都是临时对象,所以经过GC之后很少有进入到老年区中,因此OOM的情况也很少发生
永久区的演变
这个区域常驻内存的。用来存放IDK自身携带的Class对象。Interface元数据,存储的是Java运行时的一些环境或类信息。
jdk1.6之前︰永久代,常量池是在方法区;
jdk1.7︰永久代,但是慢慢的退化了,去永久代,常量池在堆中
jdk1.8之后:无永久代,常量池在元空间
OOM的出现
永久区内存崩溃的情况:一个启动类,加载了大量的第三方jar包。Tomcat部署了太多的应用,大量动态生成的反射类。不断的被加载。直到内存满,就会出现OOM;
默认情况下:分配的总内存是电脑内存的四分之一,初始化的内存是电脑内存的六十四分之一
但是这些内存参数是可以人为调整的
运行程序后,发现JVM参数发生了变化
可以看出,元空间逻辑上存在,但物理上并不存在
出现OOM如何去排查
可以使用内存快照工具分析对象,主要有:MAT(Eclipse),Jprofile(IDEA)两种工具。
向VM传入以下参数即可
当程序运行出现OOM,进入类所在的文件目录下去寻找Jprofile生成的hprof文件即可。
双击打开即可初步发现占用大量内存的对象,俗称“大对象”
查看线程(Thread Dump)即可发现程序中出现问题的所在行。
针对具体情况就可以进行JVM相关调优参数进行调优:
分享一些其他的JVM参数:
-Xmx4g:堆内存最大值为4GB。
-Xms4g:初始化堆内存大小为4GB。
-Xmn1200m:设置年轻代大小为1200MB。增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
-Xss512k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1MB,以前每个线程堆栈大小为256K。应根据应用线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。
-XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
-XX:SurvivorRatio=8:设置年轻代中Eden区与Survivor区的大小比值。设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10
-XX:PermSize=100m:初始化永久代大小为100MB。
-XX:MaxPermSize=256m:设置持久代大小为256MB。
-XX:MaxTenuringThreshold=15:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过
可调优参数:
-Xms:初始化堆内存大小,默认为物理内存的1/64(小于1GB)。
-Xmx:**堆内存最大值。**默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。
-Xmn:新生代大小,包括Eden区与2个Survivor区。
-XX:SurvivorRatio=1:Eden区与一个Survivor区比值为1:1。
-XX:MaxDirectMemorySize=1G:**直接内存。**报java.lang.OutOfMemoryError: Direct buffer memory异常可以上调这个值。
-XX:+DisableExplicitGC:禁止运行期显式地调用System.gc()来触发fulll GC。
注意: Java RMI的定时GC触发机制可通过配置-Dsun.rmi.dgc.server.gcInterval=86400来控制触发的时间。
-XX:CMSInitiatingOccupancyFraction=60:老年代内存回收阈值,默认值为68。
-XX:ConcGCThreads=4:CMS垃圾回收器并行线程线,推荐值为CPU核心数。
-XX:ParallelGCThreads=8:新生代并行收集器的线程数。
-XX:MaxTenuringThreshold=10:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。
-XX:CMSFullGCsBeforeCompaction=4:指定进行多少次fullGC之后,进行tenured区 内存空间压缩。
-XX:CMSMaxAbortablePrecleanTime=500:当abortable-preclean预清理阶段执行达到这个时间时就会结束。
相关文章:

JVM堆与堆调优以及出现OOM如何排查
调优的位置——堆 Heap,一个JVM只有一个堆内存,堆内存的大小是可以调节的。 类加载器读取了类文件后,一般会把什么东西放到堆中?类,方法,常量,变量~,保存我们所有引用类型的真实对象; 堆内存中…...

Springboot——自定义Filter使用测试总结
文章目录前言自定义过滤器并验证关于排除某些请求的方式创建测试接口请求测试验证异常过滤器的执行流程注意事项资料参考前言 在Java-web的开发领域,对于过滤器和拦截器用处还是很多,但两者的概念却极易混淆。 过滤器和拦截器都是采用AOP的核心思想&am…...

软件测试(进阶篇)(1)
一)如何根据需求来设计测试用例? 1)验证功能的正确性,合理性,无二义性,逻辑要正确 2)分析需求,细化需求,从需求中提取出测试项,根据测试项找到测试点,根据测试点具体的来进行设计测试…...
(七十三)大白话深入探索多表关联的SQL语句到底是如何执行的?(1)
今天我们来继续跟大家聊聊多表关联语句是如何执行的这个问题,上次讲了一个最最基础的两个表关联的语句和执行过程,其实今天我们稍微来复习一下,然后接着上次的内容,引入一个“内连接”的概念来。 假设我们有一个员工表࿰…...

SYSU程设c++(第三周) 对象类、类的成员、类与结构体的区别、类的静态成员
对象&类 类用于指定对象的形式,它包含数据的表示方法和用于处理数据的方法。 • 类中的数据和方法称为类的成员。 • 函数在一个类中也被称为类的成员。 定义一个类,其效果是定义一个数据类型的蓝图。它定义了类的对象包括了什么,以及可…...
Redis管道
目录 1、什么是管道? 2、案例演示 3、注意事项 4、面试题 1、什么是管道? 管道(pipeline)可以一次性发送多条命令给服务端,服务端依次处理完,通过一条响应一次性将结果返回,减少 IO 的次数&…...
conda的共用package[硬链接]@pytorch和tensorflow装在同一个环境里好不好?
文章目录refpackage复用(指定同版本)conda install 比pip install 更可能节省空间pytorch和tensorflow装在同一个环境里?导入依赖导入依赖试验ref python - Can packages be shared across Anaconda environments? - Stack OverflowManaging environments — conda 23.1.0.p…...

「Vue面试题」动态给vue的data添加一个新的属性时会发生什么?怎样去解决的?
一、直接添加属性的问题 我们从一个例子开始 定义一个p标签,通过v-for指令进行遍历 然后给botton标签绑定点击事件,我们预期点击按钮时,数据新增一个属性,界面也 新增一行 <p v-for"(value,key) in item" :key&q…...

Flutter-Scaffold组件
在Flutter开发当中,我们可能会遇到以下的需求:实现页面组合使用,比如说有悬浮按钮、顶部菜单栏、左右抽屉侧边栏、底部导航栏等等效果。Scaffold组件可以帮我们实现上面需求说的效果。这篇博客主要分享容器组件的Scaffold组件的使用ÿ…...

Postman简介及接口测试流程(小菜鸟攻略)
目录 前言 一、常见接口 二、前端和后端 三、什么是接口测试 四、接口组成 1、接口说明 2、调用url 3、请求方法(get\post) 4、请求参数、参数类型、请求参数说明 5、返回参数说明 五、为什么要做接口测试 本章主要介绍如何使用postman做接口…...
kubebuilder注释
标记语法Empty kubebuilder:validation:Optional:空标记像命令行中的布尔标记位-- 仅仅是指定他们来开启某些行为。Anonymous kubebuilder:validation:MaxItems2:匿名标记使用单个值作为参数。Multioption kubebuilder:printcolumn:JSONPath".statu…...

java日志
日志是软件开发的重要组成部分。一个精心编写的日志代码提供快速的调试,维护方便,以及应用程序的运行时信息结构化存储。日志记录确实也有它的缺点。它可以减缓的应用程序Log4jLog4j是Apache的一个开放源代码项目,通过使用Log4j,我…...

研发中台拆分过程的一些心得总结
背景在 21 年,中台拆分在 21 年,以下为中台拆分的过程心得,带有一定的主观,偏向于中小团队中台建设参考(这里的中小团队指 3-100 人的团队),对于大型团队不太适用,毕竟大型团队人中 …...

HTTP介绍
HTTP1、简介HTTP概念:HyperText Transfer Protocol,超文本传输协议,规定了浏览器和服务器之间数据传输的规则。数据传输的规则指的是请求数据和响应数据需要按照指定的格式进行传输。如果想知道具体的格式,可以打开浏览器…...

10 卷积神经网络及python实现
1 卷积神经网络简介 卷积神经网络(Convolutional Neural Network, CNN)由LeCun在上世纪90年代提出。 LeCun Y., Bottou L., Bengio Y., and Haffner P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp. 1-7, 1998. 卷积核和特征图&…...

【立体匹配论文阅读】AANet: Adaptive Aggregation Network for Efficient Stereo Matching
Authors: Haofei Xu, Juyong Zhang Link: https://arxiv.org/abs/2004.09548 Years: 2020 Credit Novelty and Question set up 主流的立体匹配模型的代价聚合操作主要用了3D卷积,这部分操作的算力和内存消耗过大,因此作者提出一种新的模型AANet&#x…...
服务器防入侵攻击,安全加固措施
服务器防入侵攻击,安全加固措施当服务器被入侵,被攻击的时候,很多服务器维护人员不懂得如何去防止入侵,防止黑客的攻击,只能眼巴巴的看着服务器被任意的攻击,给服务器上的网站造成严重的经济损失࿰…...

解读:“出境标准合同”与“出境安全评估”要点与异同
《数据安全法》第四条及《个人信息保护法》第三章对数据出境、个人信息跨境提出明确要求,《数据安全法》与《个人信息保护法》存在互相包含、被包含、衔接、特性、独立性、相互补充等内涵。本文通过上位法互相衔接、关联、特性的思路,去观察《个人信息出…...

python带你成功复刻热门手机游戏——飞翔的小鸟
前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 飞翔的小鸟(游戏英文名:Flappy Bird) 一款由越南独立开发者开发的手机游戏,是之前非常流行的一款手机游戏 小游戏目标:让小鸟穿过管子,不要碰到任何物体…...

YOLOv8初体验:检测、跟踪、模型部署
安装 YOLOv8有两种安装方式,一种是直接用pip命令安装: pip install ultralytics另外一种是通过源码安装: git clone https://github.com/ultralytics/ultralytics cd ultralytics pip install -e .[dev]安装完成后就可以通过yolo命令在命令…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...