当前位置: 首页 > news >正文

【补充1】字节对齐

文章目录

  • 1.字节对齐的基本概念
  • 2.字节对齐规则
  • 3.实践出真知(加大难度)
  • 4 位域

1.字节对齐的基本概念

(1)现代计算机中内存空间都是按照byte划分的,
从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,
但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,
这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。(2)对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。
一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对 数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。

显然在读取效率上下降很多。

2.字节对齐规则

先来看一个简单的例子

struct DATA
{short flag;int   data;
};
printf("DATA sizeof:%d\n", sizeof(DATA));
上面的输入会是多少呢?这里的输出是size=8,亲们可以复制代码测试看输出是多少。
那么问题来了,为什么这个结构的大小不是short(2字节)+int(4字节)=6字节呢?请看下面的对齐规则你便明白了。

(1).数据类型自身的对齐值:
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
(2).结构体的自身对齐值:
其成员中自身对齐值最大的那个值(默认)。
(3).指定对齐值(这个对齐的值是可以人为控制的):

>#pragma pack(value) 	// 作用:C编译器将按照n个字节对齐。
#pragma pack()			// 作用:取消自定义字节对齐方式。
//或者
#pragma pack(push, value)	// 作用:是指把原来对齐方式设置压栈,并设新的对齐方式设置为value个字节对齐
#pragma pack(pop)           // 作用:恢复对齐状态
// 此时就使用指定对齐值 value。
// 两者区别:加入push和pop可以使对齐恢复到原来状态,而不是编译器默认;
//         可以说后者更优,但是很多时候两者差别不大。

(4).数据成员、结构体的有效对齐值:
自身对齐值和指定对齐值中取最小的那个值作为对齐值。

在倒回去看例子,结构体DATA的对齐取的是4(int 4字节较大),所以前面的short就变成了占4个字节空间,所以sizeof(DATA)输出的是8了。
为什么short就变成占4字节空间了?刚开始也不太明白为什么short就变成占4字节空间了。继续看完下面的实践便明白了。

3.实践出真知(加大难度)

struct DATA1
{short 	flag1;int	  	data;short 	flag2;
};struct DATA2
{short 	flag1;short 	flag2;int     data;
};printf("DATA1 size:%d\n", sizeof(DATA1));
printf("DATA2 size:%d\n", sizeof(DATA2));

运行上面的程序,结果将是:

DATA1 size:12
DATA2 size:8

为什么会出现这样的结果呢?分析:
首先,两个结构体取的对齐数是4(int 4字节较大),在结构体DATA1进行存放时,假设是从地址0x00开始存放的,flag1(short)存放在在0x00-0x01里面,在前四个字节里面还剩下两个字节;紧接着是data(int),data(int)是四个字节,剩下的两个字节不够装data了。所以data(int)就新开了四个字节存放,所以他的地址就是0x04-0x07;最后是flag2(short),由于它只有两个字节,即0x08-0x09,他为了满足四字节对齐,所以它也空了两个字节。最终DATA1的内存为0x00-0x11;所以sizeof(DATA1)=12。
我们在来看DATA2,flag1(short)存放在0x00-0x01里面,前四个字节里面还剩下两个字节,紧接着是flag2(short),flag2(short)是两个个字节,前两剩下的两个字节正好存放下,存放在0x02-0x03,所以前四个字节将flag1和flag2存放好了;最后是data(int),data在紧接着的四个字节里存放,即0x04-0x07,所以最终DATA2的内存为0x00-0x07;所以sizeof(DATA2)=8。

[拓展]如何让结构体DATA1也变为8字节呢?那就是人为控制字节对齐数。
将上面的结构体改为如下

#pragma pack(push, 2)
struct DATA1
{short 	flag1;int	  	data;short 	flag2;
};
#pragma pack(pop)struct DATA2
{short 	flag1;short 	flag2;int     data;
};printf("DATA1 size:%d\n", sizeof(DATA1));
printf("DATA2 size:%d\n", sizeof(DATA2));

修改后的输出为:

DATA1 size:8
DATA2 size:8

如上,我们便将DATA1的字节对齐数设置为2,这边便控制了DATA1的的字节数为8;可以在字节对齐数为2的基础上在此分析其构成,我这里就不在阐述了。

4 位域

结构体中,还有一个操作叫做位域,

struct A
{char  a : 2;short b : 3;int   c : 4;
};

在结构体A中,a的8位只有2位有效,b的16位只有3为有效,c的32位只有4位有效。
注意:位域必须存储在同种数据类型所占的字节中,不能跨两个同种数据类型所占的字节数。 也就是说,后面的数字不能大于前面类型的位数。 位域不会影响 sizeof() 的规则

相关文章:

【补充1】字节对齐

文章目录 1.字节对齐的基本概念2.字节对齐规则3.实践出真知(加大难度)4 位域 1.字节对齐的基本概念 (1)现代计算机中内存空间都是按照byte划分的, 从理论上讲似乎对任何类型的变量的访问可以从任何地址开始&#xff0…...

Java数据库连接(JDBC)

一、引言 在Java应用程序中,经常需要与数据库进行交互以存储、检索和处理数据。Java数据库连接(JDBC)是Java平台中用于执行这一任务的标准API。JDBC允许Java程序连接到关系数据库,并使用SQL语句来执行查询和更新操作。本教程将详…...

记录一次cas单点登录的集成

主要思路:浏览器访问CAS服务器登录,拿到凭证给后端,后端用此凭证到CAS服务器验证登录并拿到用户信息,之后基于该凭证维持用户的登录状态。 主要流程: 1.浏览器访问后端需认证登录地址(不带ticket&#xf…...

【吊打面试官系列】Java高并发篇 - 什么是乐观锁和悲观锁?

大家好,我是锋哥。今天分享关于 【什么是乐观锁和悲观锁?】面试题,希望对大家有帮助; 什么是乐观锁和悲观锁? 1、乐观锁: 就像它的名字一样,对于并发间操作产生的线程安全问题持乐观状态, 乐观锁认为竞争…...

机器学习之词袋模型

目录 1 词袋模型基本概念 2 词袋模型的表示方法 2.1 三大方法 1 独热表示法(One-Hot) 2 词频表示法(Term Frequency, TF) 3 词频-逆文档频率表示法(TF-IDF) 2.2 例子 1 词袋模型基本概念 词袋模型&a…...

【C++/STL】vector(常见接口、模拟实现、迭代器失效)

🌈个人主页:秦jh_-CSDN博客🔥 系列专栏: https://blog.csdn.net/qinjh_/category_12575764.html?spm1001.2014.3001.5482 目录 简单使用 常见接口 find insert vector模板 模拟实现 尾插 构造 迭代器失效 使用memcpy拷贝问…...

Spring Boot Web 开发:MyBatis、数据库连接池、环境配置与 Lombok 全面解析

推荐一个AI网站,免费使用豆包AI模型,快去白嫖👉海鲸AI 1.0 MyBatis 概述 MyBatis 是一个优秀的持久层框架,它支持自定义 SQL、存储过程以及高级映射。MyBatis 可以帮助我们将数据库操作抽象出来,使得我们的代码更加简洁…...

【UE5.1 多线程 异步】“Async Blueprints Extension”插件使用记录

目录 一、异步生成Actor示例 二、异步计算示例 参考视频 首先需要在商城中下载“Async Blueprints Extension”插件 一、异步生成Actor示例 2. 创建一个线程类,这里要指定父类为“LongAsyncTask”、“InfiniteAsyncTask”、“ShortAsyncTask”中的一个 在线程类…...

【已解决】在jupyter里运行torch.cuda.is_available(),显示True,在pycharm中运行却显示false。

文章目录 问题概述1、在Jupyter中GPU运行true2、在pycharm中GPU运行false3、个人解决方案仅供参考 问题概述 在jupyter里运行torch.cuda.is_available(),显示True,在pycharm中运行却显示false。原因在于jupyter 运行环境和pycharm 运行环境不同&#xf…...

Flutter 中的 Scrollbar 小部件:全面指南

Flutter 中的 Scrollbar 小部件:全面指南 在Flutter中,滚动条(Scrollbar)是一种常见的UI组件,用于提供对滚动内容的快速访问和控制。Scrollbar 小部件可以附加到任何可滚动的widget上,如ListView、GridVie…...

【华为】将eNSP导入CRT,并解决不能敲Tab问题

华为】将eNSP导入CRT,并解决不能敲Tab问题 eNSP导入CRT打开eNSP,新建一个拓扑右键启动查看串口号关联CRT成功界面 SecureCRT连接华为模拟器ensp,Tab键不能补全问题选择Options(选项)-- Global Options (全局选项&#…...

实验二 电子传输系统安全-进展2

上周任务完成情况(代码链接,所写文档等) 重新调通电子公文传输系统部署gmssl学习生成SM2证书学习gmssl中的CTLS实现将数据库从SqlServer迁移到Mysql调试Mysql驱动学习Bouncy Castle 代码链接 Mysql表设计 /* Navicat MySQL Data Transfer…...

JavaScript 获取 HTML 中特定父元素下的子元素

JavaScript 获取 HTML 中特定父元素下的子元素 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>查找子元素示例</title> </head> <body><div id"parent"><p&…...

等保服务是一次性服务吗?为什么?怎么理解?

我国等保政策已经严格落地执行&#xff0c;但还有不少企业对于等保服务不是很了解。例如有人问&#xff0c;等保服务是一次性服务吗&#xff1f;为什么&#xff1f;怎么理解&#xff1f;今天我们就来简单回答一下&#xff0c;仅供参考哈&#xff01; 等保服务是一次性服务吗&…...

全网首发UNIAPP功能多的iapp后台源码

全网首发UNIAPP功能多的iapp后台源码&#xff0c;众所周知UN Dev Assist 后台是一款既不免费又不好用的后台今天直接分享。 搭建教程在里面了&#xff0c;自己查看。 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/89291994 更多资源下载&#xff1a;…...

【搜索方法推荐】高效信息检索方法和实用网站推荐

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

面试被问到不懂的东西,是直接说不懂还是坚持狡辩一下?

大家好&#xff0c;我是瑶琴呀。 面试被问到不懂的东西&#xff0c;是直接说不懂还是坚持狡辩一下&#xff1f;这个问题可以转变一下&#xff0c;如果你顺利拿到 offer&#xff0c;公司安排的工作跟你之前的技术和经验不匹配&#xff0c;你还愿意干下去吗&#xff1f; 转变一…...

Flutter 中的 StatefulBuilder 小部件:全面指南

Flutter 中的 StatefulBuilder 小部件&#xff1a;全面指南 在Flutter中&#xff0c;StatefulBuilder是一个高效的小部件&#xff0c;它根据给定的构建函数来构建widget&#xff0c;并在组件树中只对需要重新构建的部分进行更新。这使得它在性能优化方面非常有用&#xff0c;特…...

mail发送接口API如何使用?怎么调用接口?

mail发送接口API的性能怎么样&#xff1f;邮件接口发信的技巧&#xff1f; 为了自动化和集成电子邮件功能到应用程序或系统中&#xff0c;开发人员可以使用各种邮件发送接口API。AokSend将介绍如何使用这些API来发送电子邮件&#xff0c;提高效率和灵活性。 mail发送接口API&…...

DOS学习-目录与文件应用操作经典案例-attrib

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一.前言 二.使用 三.案例 一.前言 DOS系统中的attrib命令是一个用于显示或更改文件&#…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

TMC2226超静音步进电机驱动控制模块

目前已经使用TMC2226量产超过20K,发现在静音方面做的还是很不错。 一、TMC2226管脚定义说明 二、原理图及下载地址 一、TMC2226管脚定义说明 引脚编号类型功能OB11电机线圈 B 输出 1BRB2线圈 B 的检测电阻连接端。将检测电阻靠近该引脚连接到地。使用内部检测电阻时,将此引…...

DROPP算法详解:专为时间序列和空间数据优化的PCA降维方案

DROPP (Dimensionality Reduction for Ordered Points via PCA) 是一种专门针对有序数据的降维方法。本文将详细介绍该算法的理论基础、实现步骤以及在降维任务中的具体应用。 在现代数据分析中&#xff0c;高维数据集普遍存在特征数量庞大的问题。这种高维特性不仅增加了计算…...

【电路笔记】-变压器电压调节

变压器电压调节 文章目录 变压器电压调节1、概述2、变压器电压调节3、变压器电压调节示例14、变压器电压调节示例25、变压器电压调节示例36、总结变压器电压调节是变压器输出端电压因连接负载电流的变化而从其空载值向上或向下变化的比率或百分比值。 1、概述 电压调节是衡量变…...