LeetCode:279.完全平方数
class Solution:def numSquares(self, n: int) -> int:dp=[i for i in range(n+1)]for i in range(2,n+1):for j in range(1,int(i**(0.5))+1):dp[i]=min(dp[i],dp[i-j*j]+1)return dp[-1]
代码解释
- 初始化 DP 数组:
dp = [i for i in range(n+1)]
这里,dp[i]
表示数字i
可以由多少个完全平方数组成。初始时,假设每个数字都由它本身一个完全平方数组成,即dp[i] = i
。 - 动态规划:
外层循环遍历从 2 到n
的所有数字i
。
内层循环遍历从 1 到sqrt(i)
的所有整数j
。这里j
是可能的完全平方数的平方根。
对于每个i
和j
,我们尝试将i
分解为j*j
和i-j*j
两部分。如果i-j*j
仍然是非负的,那么dp[i]
可以更新为dp[i-j*j] + 1
(即i-j*j
所需的完全平方数加上当前的j*j
)。
但是,我们要确保dp[i]
始终是最小的值,因此我们使用min(dp[i], dp[i-j*j]+1)
来更新它。 - 返回结果:
最后,dp[-1]
就是n
可以由的最少完全平方数之和,因为dp
数组的下标是从 0 到n
的。
举例
假设 n = 12
。
初始时,dp
数组为:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
开始动态规划:
- 当
i = 2
,j
可以是 1,因为2 = 1*1 + 1*1
(但这里我们只使用一个平方数),所以dp[2] = 1
- 当
i = 3
,j
只能是 1,因为3 = 1*1 + 2
,但 2 不是一个完全平方数,所以dp[3]
保持为 3 - …
- 当
i = 4
,j
可以是 1 或 2,因为4 = 1*1 + 3
或4 = 2*2
,后者更优,所以dp[4] = 1
- 当
i = 12
,我们考虑所有可能的j
值,并找到最佳组合。最终,12 = 4 + 4 + 4
(或12 = 1 + 3 + 8
等,但 4+4+4 是最少的),所以dp[12] = 3
最终,dp[-1]
(即 dp[12]
)为 3,表示 12 可以由 3 个完全平方数组成。
相关文章:

LeetCode:279.完全平方数
class Solution:def numSquares(self, n: int) -> int:dp[i for i in range(n1)]for i in range(2,n1):for j in range(1,int(i**(0.5))1):dp[i]min(dp[i],dp[i-j*j]1)return dp[-1]代码解释 初始化 DP 数组: dp [i for i in range(n1)] 这里,dp[i]…...
Python面试宝典:Python中与ORM技术(对象关系映射)相关的面试笔试题(1000加面试笔试题助你轻松捕获大厂Offer)
Python面试宝典:1000加python面试题助你轻松捕获大厂Offer【第二部分:Python高级特性:第十五章:数据库编程:第二节:ORM技术】 第十五章:数据库编程第二节:ORM技术SQLAlchemyDjango ORMORM技术的优势和劣势python中与ORM技术相关的面试笔试题面试题1面试题2面试题3面试题…...

VUE3+TS+elementplus创建table,纯前端的table
一、前言 开始学习前端,直接从VUE3开始,从简单的创建表格开始。因为自己不是专业的程序员,编程主要是为了辅助自己的工作,提高工作效率,VUE的基础知识并不牢固,主要是为了快速上手,能够做出一些…...

UE驻网失败问题(二)
另一个UE注册失败的问题,具体过程如下: 问题现象如上,UE在这个N48上的小区一直在重复上述过程,收到RRC Setup后就不发RRC Setupcomplete,闭上眼睛也知道大概率是这个RRC Setup的配置有问题。 在问题时间点周围查看&…...
【MySQL】第三周作业
【MySQL】第三周作业 1、在数据库example下创建college表。2、在student表上创建视图college_view。3、查看视图college_view的详细结构4、 更新视图。5 、修改视图,6 、删除视图college_view 1、在数据库example下创建college表。 College表内容如下所示 字段名 …...

香橙派 Kunpeng Pro使用教程:从零开始打造个人私密博客
一、引言 在这个日益互联的世界中,单板计算机已经成为创新和个性化解决方案的重要载体。而在单板计算机领域,香橙派 Kunpeng Pro凭借其强大的性能和灵活的应用潜力,正逐渐吸引着全球开发者和技术爱好者的目光。 作为一款集成了华为的鲲鹏处…...

深入探索:中文字符的编码与转移字符的奥秘
新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言:探索字符编码的世界 二、字符编码基础:理解ASCII与Unicode…...

Ubuntu中 petalinux 安装 移植linux --tftp/tftp-hpa服务的方法
Xilinx 文档 PetaLinux 指南:如何创建 PetaLinux 环境 (2019.1) PetaLinux工具参考指南 PetaLinux安装详解(Xilinx , linux, zynq, zynqMP) petalinux 2020.1安装教程 一、PetaLinux工具和库安装 PetaLinux 工具要求主机系统 /bin/sh 为“b…...

JVM(内存区域划分、类加载机制、垃圾回收机制)
目录 一. 内存区域划分 1.本地方法栈(Native Method Stacks) 2.虚拟机栈(JVM Stacks) 3.程序计数器(Program Counter Register) 4.堆(Heap) 5.元数据区(Metaspace) 二.类加载机制 1.加载 2.验证 3.准备 4.解析 5.初始化 "双亲委派模型" 三. GC 垃圾回收…...
C语言---基础内容(万字)
C 语言是一种通用的、面向过程式的计算机程序设计语言。1972 年,为了移植与开发 UNIX 操作系统,丹尼斯里奇在贝尔电话实验室设计开发了 C 语言。 C 语言是一种广泛使用的计算机语言,它与 Java 编程语言一样普及,二者在现代软件程…...

c语言从入门到函数速成(完结篇)
哈喽,小伙伴们大家好呀,本篇文章是这个系列的完结篇,希望大家看完后能有所收获哦 首先能看到这里的同学,一定也是自觉性比较强的了,我会在文章末尾给大家发点小福利 那么,我们先来通过数学中的函数来引入一…...

关于linux磁盘告警问题
案例:我们在执行df命令时,查看到磁盘利用率很高,但是到相对应的目录执行du -sh *来找大文件时进行删除时,发现各个目录相加并不大,如下图: 使用df命令查看到根(/)目录使用到33G,而du命令显示只使…...

冯喜运:5.27黄金暴跌大阴后出现“暂定符”今日黄金原油操作策略
【黄金消息面分析】:金价虽然有大阴线暴跌,但依然属于超买后的调整而非熊市,对中长线投资者来说只是市场洗牌。因此,在出现企稳迹象之后,随时关注反弹时机的启动。未来几日,黄金空头可能在进一步发力之前需…...

前端JS必用工具【js-tool-big-box】学习,获取全球重点城市时间
我们去住一些旅馆的时候,或者一些国际性网站,经常可以看见他们的钟表会展示一些国家地区的时间,这个就是很常用的功能。但如果不常接触这个功能的开发网站呢,大家就看自己电脑右下角的时间展示,就是自己当前的具体时间…...

BioTech - 将蛋白质的 PDB 格式文件 转换成 mmCIF 格式文件 (Python)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/139234247 蛋白质的三维结构信息通常可以通过两种格式的文件来获取:PDB (Protein Data Bank) 和 mmCIF (Macromolecular Crystallographic Information File…...

【编程题-错题集】奇数位丢弃(模拟 - 规律)
牛客对应题目链接:奇数位丢弃_牛客题霸_牛客网 (nowcoder.com) 一、分析题目 通过⼀两个例子的模拟,可以发现:每次起始删除的下标都是 2 的次方。根据这个规律,找到最后⼀次删除的起始位置的下标即可。 二、代码 #include <io…...

Docker安装MongoDB(Linux版)
文章目录 前言一、Docker环境的准备1.安装依赖2.安装Docker 二、使用Docker安装MongoDB1.mongo版本选取2.拉取合适的镜像3.宿主机创建MongoDB需要挂载的文件夹4.第一次无认证创建mongo用户5.启动需要认证的mongo容器 问题汇总总结 前言 本文章主要介绍在Centos系统,…...

【设计模式】JAVA Design Patterns——Commander(指挥官模式)
🔍目的 用于处理执行分布式事务时可能遇到的所有问题。 🔍解释 处理分布式事务很棘手,但如果我们不仔细处理,可能会带来不想要的后果。假设我们有一个电子商务网站,它有一个支付微服务和一个运输微服务。如果当前运输…...

解决vue3项目vite打包忽略.vue扩展名
项目打包时报could not relolve “...”,因为vite已不再默认忽略.vue扩展名。 解决方法如下: 在vite.config.js中配置vite使其忽略 .vue 扩展名(不建议忽略) 注意:即使忽略了.vue文件,在实际写的时候也要加…...

Vue基础(数据绑定、export使用)
1、简介 在使用vue开发的过程中,经常会遇到一些容易混淆的问题,因此,在本文中进行汇总操作,只有通过不断总结学习,才能更好掌握vue的使用(每天进步一点)。 2、数据绑定 在js中定义数据…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...