当前位置: 首页 > news >正文

LeetCode:279.完全平方数

在这里插入图片描述

class Solution:def numSquares(self, n: int) -> int:dp=[i for i in range(n+1)]for i in range(2,n+1):for j in range(1,int(i**(0.5))+1):dp[i]=min(dp[i],dp[i-j*j]+1)return dp[-1]

代码解释

  1. 初始化 DP 数组
    dp = [i for i in range(n+1)]
    这里,dp[i] 表示数字 i 可以由多少个完全平方数组成。初始时,假设每个数字都由它本身一个完全平方数组成,即 dp[i] = i
  2. 动态规划
    外层循环遍历从 2 到 n 的所有数字 i
    内层循环遍历从 1 到 sqrt(i) 的所有整数 j。这里 j 是可能的完全平方数的平方根。
    对于每个 ij,我们尝试将 i 分解为 j*ji-j*j 两部分。如果 i-j*j 仍然是非负的,那么 dp[i] 可以更新为 dp[i-j*j] + 1(即 i-j*j 所需的完全平方数加上当前的 j*j)。
    但是,我们要确保 dp[i] 始终是最小的值,因此我们使用 min(dp[i], dp[i-j*j]+1) 来更新它。
  3. 返回结果
    最后,dp[-1] 就是 n 可以由的最少完全平方数之和,因为 dp 数组的下标是从 0 到 n 的。

举例

假设 n = 12

初始时,dp 数组为:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

开始动态规划:

  • i = 2j 可以是 1,因为 2 = 1*1 + 1*1(但这里我们只使用一个平方数),所以 dp[2] = 1
  • i = 3j 只能是 1,因为 3 = 1*1 + 2,但 2 不是一个完全平方数,所以 dp[3] 保持为 3
  • i = 4j 可以是 1 或 2,因为 4 = 1*1 + 34 = 2*2,后者更优,所以 dp[4] = 1
  • i = 12,我们考虑所有可能的 j 值,并找到最佳组合。最终,12 = 4 + 4 + 4(或 12 = 1 + 3 + 8 等,但 4+4+4 是最少的),所以 dp[12] = 3

最终,dp[-1](即 dp[12])为 3,表示 12 可以由 3 个完全平方数组成。

相关文章:

LeetCode:279.完全平方数

class Solution:def numSquares(self, n: int) -> int:dp[i for i in range(n1)]for i in range(2,n1):for j in range(1,int(i**(0.5))1):dp[i]min(dp[i],dp[i-j*j]1)return dp[-1]代码解释 初始化 DP 数组: dp [i for i in range(n1)] 这里,dp[i]…...

Python面试宝典:Python中与ORM技术(对象关系映射)相关的面试笔试题(1000加面试笔试题助你轻松捕获大厂Offer)

Python面试宝典:1000加python面试题助你轻松捕获大厂Offer【第二部分:Python高级特性:第十五章:数据库编程:第二节:ORM技术】 第十五章:数据库编程第二节:ORM技术SQLAlchemyDjango ORMORM技术的优势和劣势python中与ORM技术相关的面试笔试题面试题1面试题2面试题3面试题…...

VUE3+TS+elementplus创建table,纯前端的table

一、前言 开始学习前端,直接从VUE3开始,从简单的创建表格开始。因为自己不是专业的程序员,编程主要是为了辅助自己的工作,提高工作效率,VUE的基础知识并不牢固,主要是为了快速上手,能够做出一些…...

UE驻网失败问题(二)

另一个UE注册失败的问题,具体过程如下: 问题现象如上,UE在这个N48上的小区一直在重复上述过程,收到RRC Setup后就不发RRC Setupcomplete,闭上眼睛也知道大概率是这个RRC Setup的配置有问题。 在问题时间点周围查看&…...

【MySQL】第三周作业

【MySQL】第三周作业 1、在数据库example下创建college表。2、在student表上创建视图college_view。3、查看视图college_view的详细结构4、 更新视图。5 、修改视图,6 、删除视图college_view 1、在数据库example下创建college表。 College表内容如下所示 字段名 …...

香橙派 Kunpeng Pro使用教程:从零开始打造个人私密博客

一、引言 在这个日益互联的世界中,单板计算机已经成为创新和个性化解决方案的重要载体。而在单板计算机领域,香橙派 Kunpeng Pro凭借其强大的性能和灵活的应用潜力,正逐渐吸引着全球开发者和技术爱好者的目光。 作为一款集成了华为的鲲鹏处…...

深入探索:中文字符的编码与转移字符的奥秘

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言:探索字符编码的世界 二、字符编码基础:理解ASCII与Unicode…...

Ubuntu中 petalinux 安装 移植linux --tftp/tftp-hpa服务的方法

Xilinx 文档 PetaLinux 指南:如何创建 PetaLinux 环境 (2019.1) PetaLinux工具参考指南 PetaLinux安装详解(Xilinx , linux, zynq, zynqMP) petalinux 2020.1安装教程 一、PetaLinux工具和库安装 PetaLinux 工具要求主机系统 /bin/sh 为“b…...

JVM(内存区域划分、类加载机制、垃圾回收机制)

目录 一. 内存区域划分 1.本地方法栈(Native Method Stacks) 2.虚拟机栈(JVM Stacks) 3.程序计数器(Program Counter Register) 4.堆(Heap) 5.元数据区(Metaspace) 二.类加载机制 1.加载 2.验证 3.准备 4.解析 5.初始化 "双亲委派模型" 三. GC 垃圾回收…...

C语言---基础内容(万字)

C 语言是一种通用的、面向过程式的计算机程序设计语言。1972 年,为了移植与开发 UNIX 操作系统,丹尼斯里奇在贝尔电话实验室设计开发了 C 语言。 C 语言是一种广泛使用的计算机语言,它与 Java 编程语言一样普及,二者在现代软件程…...

c语言从入门到函数速成(完结篇)

哈喽,小伙伴们大家好呀,本篇文章是这个系列的完结篇,希望大家看完后能有所收获哦 首先能看到这里的同学,一定也是自觉性比较强的了,我会在文章末尾给大家发点小福利 那么,我们先来通过数学中的函数来引入一…...

关于linux磁盘告警问题

案例:我们在执行df命令时,查看到磁盘利用率很高,但是到相对应的目录执行du -sh *来找大文件时进行删除时,发现各个目录相加并不大,如下图: 使用df命令查看到根(/)目录使用到33G,而du命令显示只使…...

冯喜运:5.27黄金暴跌大阴后出现“暂定符”今日黄金原油操作策略

【黄金消息面分析】:金价虽然有大阴线暴跌,但依然属于超买后的调整而非熊市,对中长线投资者来说只是市场洗牌。因此,在出现企稳迹象之后,随时关注反弹时机的启动。未来几日,黄金空头可能在进一步发力之前需…...

前端JS必用工具【js-tool-big-box】学习,获取全球重点城市时间

我们去住一些旅馆的时候,或者一些国际性网站,经常可以看见他们的钟表会展示一些国家地区的时间,这个就是很常用的功能。但如果不常接触这个功能的开发网站呢,大家就看自己电脑右下角的时间展示,就是自己当前的具体时间…...

BioTech - 将蛋白质的 PDB 格式文件 转换成 mmCIF 格式文件 (Python)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/139234247 蛋白质的三维结构信息通常可以通过两种格式的文件来获取:PDB (Protein Data Bank) 和 mmCIF (Macromolecular Crystallographic Information File…...

【编程题-错题集】奇数位丢弃(模拟 - 规律)

牛客对应题目链接&#xff1a;奇数位丢弃_牛客题霸_牛客网 (nowcoder.com) 一、分析题目 通过⼀两个例子的模拟&#xff0c;可以发现&#xff1a;每次起始删除的下标都是 2 的次方。根据这个规律&#xff0c;找到最后⼀次删除的起始位置的下标即可。 二、代码 #include <io…...

Docker安装MongoDB(Linux版)

文章目录 前言一、Docker环境的准备1.安装依赖2.安装Docker 二、使用Docker安装MongoDB1.mongo版本选取2.拉取合适的镜像3.宿主机创建MongoDB需要挂载的文件夹4.第一次无认证创建mongo用户5.启动需要认证的mongo容器 问题汇总总结 前言 本文章主要介绍在Centos系统&#xff0c…...

【设计模式】JAVA Design Patterns——Commander(指挥官模式)

&#x1f50d;目的 用于处理执行分布式事务时可能遇到的所有问题。 &#x1f50d;解释 处理分布式事务很棘手&#xff0c;但如果我们不仔细处理&#xff0c;可能会带来不想要的后果。假设我们有一个电子商务网站&#xff0c;它有一个支付微服务和一个运输微服务。如果当前运输…...

解决vue3项目vite打包忽略.vue扩展名

项目打包时报could not relolve “...”&#xff0c;因为vite已不再默认忽略.vue扩展名。 解决方法如下&#xff1a; 在vite.config.js中配置vite使其忽略 .vue 扩展名&#xff08;不建议忽略&#xff09; 注意&#xff1a;即使忽略了.vue文件&#xff0c;在实际写的时候也要加…...

Vue基础(数据绑定、export使用)

1、简介 在使用vue开发的过程中&#xff0c;经常会遇到一些容易混淆的问题&#xff0c;因此&#xff0c;在本文中进行汇总操作&#xff0c;只有通过不断总结学习&#xff0c;才能更好掌握vue的使用&#xff08;每天进步一点&#xff09;。 2、数据绑定 在js中定义数据&#xf…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...