基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码
第一步:准备数据
17种猴子动物数据:
self.class_indict = ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒","白秃猴", "赤猴", "滇金丝猴", "狒狒", "黑色吼猴", "黑叶猴", "金丝猴", "懒猴"],总共有1800张图片,每个文件夹单独放一种数据

第二步:搭建模型
本文选择一个ShufflenetV2网络,其原理介绍如下:
shufflenet v2是旷视提出的shufflenet的升级版本,并被ECCV2018收录。论文说在同等复杂度下,shufflenet v2比shufflenet和mobilenetv2更准确。shufflenet v2是基于四条准则对shufflenet v1进行改进而得到的,这四条准则如下:
(G1)同等通道大小最小化内存访问量 对于轻量级CNN网络,常采用深度可分割卷积(depthwise separable convolutions),其中点卷积( pointwise convolution)即1x1卷积复杂度最大。这里假定输入和输出特征的通道数分别为C1和C2,经证明仅当C1=C2时,内存使用量(MAC)取最小值,这个理论分析也通过实验得到证实。更详细的证明见参考【1】
(G2)过量使用组卷积会增加MAC 组卷积(group convolution)是常用的设计组件,因为它可以减少复杂度却不损失模型容量。但是这里发现,分组过多会增加MAC。更详细的证明见参考【1】
(G3)网络碎片化会降低并行度 一些网络如Inception,以及Auto ML自动产生的网络NASNET-A,它们倾向于采用“多路”结构,即存在一个lock中很多不同的小卷积或者pooling,这很容易造成网络碎片化,减低模型的并行度,相应速度会慢,这也可以通过实验得到证明。
(G4)不能忽略元素级操作 对于元素级(element-wise operators)比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。这里实验发现如果将ResNet中残差单元中的ReLU和shortcut移除的话,速度有20%的提升。
根据前面的4条准则,作者分析了ShuffleNet v1设计的不足,并在此基础上改进得到了ShuffleNetv2,两者模块上的对比下图所示

第三步:训练代码
1)损失函数为:交叉熵损失函数
2)训练代码:
import os
import math
import argparseimport torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_schedulerfrom model import shufflenet_v2_x1_0
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")print(args)print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')tb_writer = SummaryWriter()if os.path.exists("./weights") is False:os.makedirs("./weights")train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)# 如果存在预训练权重则载入model = shufflenet_v2_x1_0(num_classes=args.num_classes).to(device)if args.weights != "":if os.path.exists(args.weights):weights_dict = torch.load(args.weights, map_location=device)load_weights_dict = {k: v for k, v in weights_dict.items()if model.state_dict()[k].numel() == v.numel()}print(model.load_state_dict(load_weights_dict, strict=False))else:raise FileNotFoundError("not found weights file: {}".format(args.weights))# 是否冻结权重if args.freeze_layers:for name, para in model.named_parameters():# 除最后的全连接层外,其他权重全部冻结if "fc" not in name:para.requires_grad_(False)pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=4E-5)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# trainmean_loss = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateacc = evaluate(model=model,data_loader=val_loader,device=device)print("[epoch {}] accuracy: {}".format(epoch, round(acc, 3)))tags = ["loss", "accuracy", "learning_rate"]tb_writer.add_scalar(tags[0], mean_loss, epoch)tb_writer.add_scalar(tags[1], acc, epoch)tb_writer.add_scalar(tags[2], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=17)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--lr', type=float, default=0.01)parser.add_argument('--lrf', type=float, default=0.1)# 数据集所在根目录# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default=r"G:\demo\data\monkeys\training")# shufflenetv2_x1.0 官方权重下载地址# https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pthparser.add_argument('--weights', type=str, default='./shufflenetv2_x1-5666bf0f80.pth',help='initial weights path')parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)
第四步:统计正确率

第五步:搭建GUI界面


第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码

有问题可以私信或者留言,有问必答
相关文章:
基于Pytorch框架的深度学习ShufflenetV2神经网络十七种猴子动物识别分类系统源码
第一步:准备数据 17种猴子动物数据: self.class_indict ["白头卷尾猴", "弥猴", "山魈", "松鼠猴", "叶猴", "银色绒猴", "印度乌叶猴", "疣猴", "侏绒"…...
Leetcode260
260. 只出现一次的数字 III - 力扣(LeetCode) class Solution {public int[] singleNumber(int[] nums) {//通过异或操作,使得最终结果为两个只出现一次的元素的异或值int filterResult 0;for(int num:nums){filterResult^num;}//计算首个1(从右侧开始)…...
Webpack性能调优:从加载器到插件的全面优化
Webpack 是一个模块打包工具,它将项目中的各种资源(JavaScript、CSS、图片等)转换成一个或多个浏览器可识别的输出文件。优化 Webpack 的性能主要涉及减少构建时间、减小输出文件大小和提高应用加载速度。 2500G计算机入门到高级架构师开发资…...
cin-getline缓存区
更多资源请关注纽扣编程微信公众号 cin.sync()清除缓存区 如果需要输入如下内容 3 This is C language. This is JAVA language. This is Python language. 写如下程序 #include<bits/stdc.h> using namespace std; string str[100]; int main(){int n;cin>&…...
牛客前端面试高频八股总结(1)(附文档)
1.html语义化 要求使用具有语义的标签:header footer article aside section nav 三点好处: (1)提高代码可读性,页面内容结构化,更清晰 (2)无css时,时页面呈现出良好…...
韦专家:广告投放方式和内容运营底层方法论逻辑上有什么关系?
继续转推朋友这篇文章,标题稍有修改。广告投放跟内容运营逻辑是相似的,其实做SEO推广也是相似的。我们除了研究SEO流量,同样要真正理解广告投放的方式和内容运营底层方法论,这样会让你更好做好全网SEO营销! 最近陆陆续…...
003 ++ --
文章目录 --为了解决这个问题,你可以使用 synchronized 关键字来确保每次只有一个线程可以访问 increment() 方法:或者,你也可以使用 AtomicInteger,这是一个线程安全的整数类:乐观锁 – 在Java中, 和 –…...
DDR、LPDDR和GDDR的区别
1、概况 以DDR开头的内存适用于服务器、云计算、网络、笔记本电脑、台式机和消费类应用,支持更宽的通道宽度、更高的密度和不同的形状尺寸。 以LPDDR开头的内存适合面向移动和汽车这些对规格和功耗非常敏感的领域,提供更窄的通道宽度和多种低功耗运行状态…...
【附代码】@hydra.main 没有返回值,如何解决函数返回?
hydra.main 是一个 Python 装饰器,通常与 Hydra 深度学习框架一起使用。它的作用是标识 Hydra 配置文件中的主函数。在 Hydra 中,主函数是一个负责组织整个程序执行流程的函数。这个装饰器告诉 Hydra 这个函数是主函数,但并不要求它有返回值。…...
js深入理解对象的 属性(properties)的特殊 特性(attributes)
对象 js对象 // 构造一个对象 let obj {}; let obj new Object(); 我们知道js中一切皆对象,对象是一个键值对集合(key: value),一个键(key)对应一个值(value),而每个键都是这个对象的属性,我们可以通过对象的属性来…...
【MATLAB】去除趋势项(解决频谱图大部分为零的问题)
1.概 述 在许多实际信号分析处理中信号经FFT变换后得到的频谱谱线值几乎都为0,介绍这是如何形成的,又该如何去解决。 2.案例分析 读入一组实验数据文件(文件名为qldata.mat),作出该组数据的频谱图。程序清单如下: clear; clc; close all;…...
jmeter发送webserver请求和上传请求
有时候在项目中会遇到webserver接口和上传接口的请求,大致参考如下 一、发送webserver请求 先获取登录接口的token,再使用cookie管理器进行关联获取商品(webserver接口),注意参数一般是写在消息体数据中,消息体有点像HTML格式 执…...
如何看centos 有没有安装x11
在CentOS系统中,可以通过检查是否存在X11相关的包来判断是否安装了X11。你可以使用yum工具来查询是否安装了xorg-x11-server-Xorg包,这通常是X11服务器的包名。 打开终端,输入以下命令: yum list installed | grep xorg-x11-ser…...
超详细的前后端实战项目(Spring系列加上vue3)前后端篇(四)(一步步实现+源码)
兄弟们,继昨天的代码之后,继续完成最后的用户模块开发, 昨天已经完成了关于用户的信息编辑页面这些,今天再完善一下, 从后端这边开始吧,做一个拦截器,对用户做身份校验, 拦截器 这…...
决策树|随机森林 GBDT XGBoost|集成学习
文章目录 1 决策树模型1.1 决策树模型简介1.2 决策树模型核心问题1.2.1 分类划分标准1.2.1.1 信息增益1.2.1.2 增益率1.2.1.3 基尼系数 1.2.2 停止生长策略1.2.3 剪枝策略 1.3 决策树 - python代码1.3.1 结果解读1.3.2 决策树可视化1.3.3 CV - 留一法 2 集成学习2.1 Boosting2.…...
【C语言实现TCP通信】
要在C语言中实现TCP通信,您可以遵循以下步骤: 创建Socket:使用socket()函数创建套接字,指定协议族为AF_INET(IPv4)或AF_INET6(IPv6),类型为SOCK_STREAM表示使用TCP协议。…...
黑马点评-短信登录
Override public Result sendCode(String phone) { // 1.检验手机号 if (RegexUtils.isPhoneInvalid(phone)) { // 这里抛出异常和return fail有什么区别吗?———> 有区别,抛出异常会被全局异常处理器捕获,返回fail不会 throw ne…...
CentOS7 部署单机版 elasticsearch
一、环境准备 1、准备一台系统为CentOS7的服务器 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) 2、创建新用户,用于elasticsearch服务 # elastic不允许使用root账号启动服务 [rootlocalhost ~]# useradd elastic [rootlo…...
Mujoco仿真【xml文件的学习 4】
在学习Mujoco仿真的过程中,mujoco的版本要选择合适。先前我将mujoco的版本升级到了mujoco-3.1.4,在运行act的仿真代码时遇到了问题,撰写了博客: Aloha机械臂的mujoco仿真问题记录-CSDN博客 下面在进行mujoco仿真时,统…...
vue数据持久化仓库
本文章是一篇记录实用性vue数据持久化仓的使用! 首先在src中创建store文件夹,并创建一个根据本页面相关的名称, 在终端导入:npm i pinia 和 npm i pinia-plugin-persistedstate 接下来引入代码: import { defineSt…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
