当前位置: 首页 > news >正文

AIGC笔记--基于PEFT库使用LoRA

1--相关讲解

LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

LoRA 在 Stable Diffusion 中的三种应用:原理讲解与代码示例

PEFT-LoRA

2--基本原理

        固定原始层,通过添加和训练两个低秩矩阵,达到微调模型的效果;

3--简单代码

import torch
import torch.nn as nn
from peft import LoraConfig, get_peft_model, LoraModel
from peft.utils import get_peft_model_state_dict# 创建模型
class Simple_Model(nn.Module):def __init__(self):super().__init__()self.linear1 = nn.Linear(64, 128)self.linear2 = nn.Linear(128, 256)def forward(self, x: torch.Tensor):x = self.linear1(x)x = self.linear2(x)return xif __name__ == "__main__":# 初始化原始模型origin_model = Simple_Model()# 配置lora configmodel_lora_config = LoraConfig(r = 32, lora_alpha = 32, # scaling = lora_alpha / r 一般来说,lora_alpha的参数初始化为与r相同,即scale=1init_lora_weights = "gaussian", # 参数初始化方式target_modules = ["linear1", "linear2"], # 对应层添加lora层lora_dropout = 0.1)# Test datainput_data = torch.rand(2, 64)origin_output = origin_model(input_data)# 原始模型的权重参数origin_state_dict = origin_model.state_dict() # 两种方式生成对应的lora模型,调用后会更改原始的模型new_model1 = get_peft_model(origin_model, model_lora_config)new_model2 = LoraModel(origin_model, model_lora_config, "default")output1 = new_model1(input_data)output2 = new_model2(input_data)# 初始化时,lora_B矩阵会初始化为全0,因此最初 y = WX + (alpha/r) * BA * X == WX# origin_output == output1 == output2# 获取lora权重参数,两者在key_name上会有区别new_model1_lora_state_dict = get_peft_model_state_dict(new_model1)new_model2_lora_state_dict = get_peft_model_state_dict(new_model2)# origin_state_dict['linear1.weight'].shape -> [output_dim, input_dim]# new_model1_lora_state_dict['base_model.model.linear1.lora_A.weight'].shape -> [r, input_dim]# new_model1_lora_state_dict['base_model.model.linear1.lora_B.weight'].shape -> [output_dim, r]print("All Done!")

4--权重保存和合并

核心公式是:new_weights = origin_weights + alpha* (BA)

    # 借助diffuser的save_lora_weights保存模型权重from diffusers import StableDiffusionPipelinesave_path = "./"global_step = 0StableDiffusionPipeline.save_lora_weights(save_directory = save_path,unet_lora_layers = new_model1_lora_state_dict,safe_serialization = True,weight_name = f"checkpoint-{global_step}.safetensors",)# 加载lora模型权重(参考Stable Diffusion),其实可以重写一个简单的版本from safetensors import safe_openalpha = 1. # 参数融合因子lora_path = "./" + f"checkpoint-{global_step}.safetensors"state_dict = {}with safe_open(lora_path, framework="pt", device="cpu") as f:for key in f.keys():state_dict[key] = f.get_tensor(key)all_lora_weights = []for idx,key in enumerate(state_dict):# only process lora down keyif "lora_B." in key: continueup_key    = key.replace(".lora_A.", ".lora_B.") # 通过lora_A直接获取lora_B的键名model_key = key.replace("unet.", "").replace("lora_A.", "").replace("lora_B.", "")layer_infos = model_key.split(".")[:-1]curr_layer = new_model1while len(layer_infos) > 0:temp_name = layer_infos.pop(0)curr_layer = curr_layer.__getattr__(temp_name)weight_down = state_dict[key].to(curr_layer.weight.data.device)weight_up   = state_dict[up_key].to(curr_layer.weight.data.device)# 将lora参数合并到原模型参数中 -> new_W = origin_W + alpha*(BA)curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device)all_lora_weights.append([model_key, torch.mm(weight_up, weight_down).t()])print('Load Lora Done')

5--完整代码

PEFT_LoRA

相关文章:

AIGC笔记--基于PEFT库使用LoRA

1--相关讲解 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS LoRA 在 Stable Diffusion 中的三种应用:原理讲解与代码示例 PEFT-LoRA 2--基本原理 固定原始层,通过添加和训练两个低秩矩阵,达到微调模型的效果; 3--简单代…...

yolo 算法 易主

标题:YOLOv10: Real-Time End-to-End Object Detection 论文:https://arxiv.org/pdf/2405.14458ethttps%3A//arxiv.org/pdf/2405.14458.zhihu.com/?targethttps%3A//arxiv.org/pdf/2405.14458 源码:https://github.com/THU-MIG/yolov10 分析…...

用这8种方法在海外媒体推广发稿平台上获得突破-华媒舍

在今天的数字时代,海外媒体推广发稿平台已经成为了许多机构和个人宣传和推广的有效途径。如何在这些平台上获得突破并吸引更多的关注是一个关键问题。本文将介绍8种方法,帮助您在海外媒体推广发稿平台上实现突破。 1. 确定目标受众 在开始使用海外媒体推…...

怎么调试前端文件:一步步揭开前端调试的神秘面纱

怎么调试前端文件:一步步揭开前端调试的神秘面纱 在前端开发的世界中,调试是一项至关重要的技能。它能够帮助我们定位并解决代码中的错误,提升应用的性能和用户体验。本文将从四个方面、五个方面、六个方面和七个方面,为你揭示前…...

【深入学习Redis丨第一篇】Redis服务器部署详解

前言 小伙伴们大家好,我是陈橘又青,今天起 《深入学习Redis》 专栏开始更新。本专栏将专为希望深入了解Redis的开发者、系统架构师以及数据库爱好者而写的免费专栏。从Redis的基本概念入手,逐步深入到其内部实现和高级用法。希望能帮助你更好…...

git教程(IDEA + 命令行)

首先假设你已经安装 git 且 已经初始化完成: // 初始化git config --global user.name "你的用户名" git config --global user.email "你的邮箱"在当前文件夹下创建一个仓库,且该文件夹下会有多个项目 首先在当前文件夹下新建git…...

树莓派部署harbor_arm64

文章目录 树莓派4b部署Harbor-arm64版本docker-compose维护命令访问harbor 192.168.1.111认用户名密码admin/Harbor12345 树莓派4b部署Harbor-arm64版本 harbor-arm版本 部署:参考 wget https://github.com/hzliangbin/harbor-arm64/releases/download/v1.9.3/ha…...

Typora图床配置优化(PicGo-Core(command line) 插件 + gitee)

Typora图床配置优化(PicGo-Core(command line) 插件 gitee) 前言 在日常使用Typora编写markdown笔记时,经常需要插入图片来帮助理解和整理逻辑。然而,由于图片保存在本地,上传到网上时经常出现图片不见或错误警告的…...

开放式耳机推荐品牌:五款品质超凡机型必须选购

在这个快节奏的生活中,我们每个人都渴望在忙碌之余找到一片属于自己的宁静。音乐,作为连接心灵的桥梁,无疑是最为直接和有效的途径。而一款优秀的开放式耳机,不仅能让我们沉浸在美妙的旋律中,还能在保持对外界环境感知…...

【大数据面试题】31 Flink 有哪些重启方法

一步一个脚印,一天一道面试题 Flink 提供了几种不同的重启方法: 异常自动从 Checkpoint 重启: Checkpoint是Flink的另一种状态快照机制,它比Savepoint更为频繁,提供了细粒度的状态恢复点。通过配置Checkpoint,Flink会…...

【IDEA】Redis可视化神器

在开发过程中,为了方便地管理 Redis 数据库,我们可能会使用一些数据库可视化插件。这些插件通常可以帮助你在 IDE 中直观地查看和管理 Redis 数据库,包括查看键值对、执行命令、监视数据库活动等。 IDEA作为IDE界的Jenkins,本身自…...

深入分析 Android Activity (十一)

文章目录 深入分析 Android Activity (十一)1. Activity 的内存管理和优化1.1 内存泄漏的常见原因1.2 避免内存泄漏的方法1.3 内存泄漏检测工具 2. Activity 的配置变更处理2.1 处理配置变更2.2 保存和恢复状态2.3 使用 ViewModel 3. Activity 的测试3.1 单元测试3.2 UI 测试 4…...

go语言切片、数组去重函数SliceUnique 支持所有值是可比较类型的切片或者数组去重

我们在go语言开发的时候经常会需要对切片或者数组进行去重操作, 今天就给大家分享一个切片 或者数组去重的通用函数。 这里提醒大家注意go语言是严格区分数据类型的, 切片slice 和 数组 array是不同的数据类型, 不要混淆!&#x…...

微信小程序实现计算当前位置到目的地的距离

实现方式:使用腾讯位置服务 微信小程序JavaScript SDK | 腾讯位置服务 1.进腾讯位置服务申请key 2.下载sdk 微信小程序JavaScript SDK | 腾讯位置服务 3.微信公众平台添加授权域名 4.代码实现计算 const qqmap require("../../utils/qqmap-wx-jssdk.min.js…...

灵动微单片机洗衣机方案——【软硬件开发支持】

RAMSUN英尚以洗衣机洗涤主驱电机为例,主驱电机和多电机控制首选MM32SPIN0280.灵动微电子能够提供完整的软硬件开发支持,目前方案已经在主流家电厂出货。 洗衣机方案 皮带洗衣机 DD直驱洗衣机 波轮洗衣机 Mini壁挂和桌面洗衣机 洗涤烘干双变频方案 热泵烘…...

EureKa是什么?

Eureka 是一个源于 Netflix 公司的开源项目,主要用于实现服务注册和服务发现的功能。它是构建分布式系统中的微服务架构的一个关键组件。下面是对 Eureka 的解释: 基本概念 Eureka 是基于 REST 的服务,主要用于管理微服务架构中的服务实例的…...

【数据结构】直接选择排序详解!

文章目录 1.直接选择排序 1.直接选择排序 🐧 begin 有可能就是 maxi ,所以交换的时候,要及时更新 maxi 🍎 直接选择排序是不稳定的,例如: 9 [9] 5 [5],排序后,因为直接选择排序是会…...

vue3中的toRaw API

文章目录 什么是toRaw API?为什么需要toRaw?如何使用toRaw?实际应用场景 这两天在写项目的时候,发现了一个之前没用过的api,于是上网查了一下,发现这个api还是挺常用,所以在这记录一下 什么是t…...

接口响应断言-json

json认识JSONPath源码类学习/json串的解析拓展学习 目的:数据返回值校验测试 json认识 json是什么-是一种数据交换格式,举例平时看到的json图2,在使用中查看不方便,会有格式转化的平台,json格式的展示 JSON在线视图…...

全面盘点多模态融合算法及应用场景

关注作者,分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕博,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人 多…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...