当前位置: 首页 > news >正文

支持向量回归删除异常值Python

1、支持向量回归(SVR)原理

支持向量回归(Support Vector Regression,SVR)不仅可以用于预测,还可以用于异常值检测。其基本思路是训练一个回归模型,通过对每个数据点进行预测,并计算其预测残差,来判断该数据点是否为异常值。

在SVR中,我们通过最大化预测出错的容忍度(margin)来寻找最优解。具体地,我们希望找到一个超平面,使得所有数据点到该超平面的距离都大于等于一定的阈值(margin)。对于线性回归模型,该超平面为:

w^T * x + b = 0

其中,w是超平面法向量,b是偏置项,x是输入数据。对于一个输入数据x_i,其距离超平面的距离为:

y_pred_i - y_i = (w^T * x_i + b) - y_i

其中,y_pred_i是该数据点的预测值,y_i是该数据点的真实值。我们定义预测残差为绝对值:

r_i = abs(y_pred_i - y_i)

那么,如果某个数据点的预测残差(r_i)大于某个阈值,则被视为异常值,否则视为正常值。

在实际操作中,我们需要指定SVR的一些超参数,例如核函数类型、核函数参数、惩罚系数等。这些超参数对于SVR的性能有很大的影响,需要根据具体问题进行调整。

2、关键函数svr.fit函数参数

sklearn.svm.SVRfit函数常用参数如下:

  • X: 训练数据X,必选参数,形状为(n_samples, n_features)。
  • y: 目标值y,必选参数,形状为(n_samples,)。
  • sample_weight: 样本权重,可选参数,形状为(n_samples,),默认每个样本的权重相等。
  • C: 惩罚系数,可选参数,默认为1.0,一般取值为(0, +∞)之间的数。C越小,模型越简单;C越大,模型越复杂。调整C的值可以防止过拟合或欠拟合的问题。
  • kernel: 核函数,可选参数,默认为’rbf’,表示高斯核函数。常用的核函数还有’linear’线性核函数、'poly’多项式核函数、‘sigmoid’ Sigmoid核函数。核函数的选择决定了模型的复杂度和拟合能力。
  • degree: 多项式核函数的次数,可选参数,默认为3。
  • gamma: 核函数系数,可选参数,默认为’scale’,表示使用1 / (n_features * X.var())作为gamma值。也可以设置为’auto’或一个数值。
  • coef0: 核函数的截距,可选参数,默认为0。
  • epsilon: SVR中的ε,可选参数,默认为0.1。控制了对误差的容忍度。如果预测值与真实值的差小于ε,该点就被视为预测正确。
  • shrinking: 是否使用启发式(Hearst)方法来加速计算,可选参数,默认为True。建议保持默认值。
  • tol: 迭代终止条件,可选参数,默认为1e-3。如果模型收敛后两次迭代的损失函数之差小于该值,则终止训练。
  • max_iter: 最大迭代次数,可选参数,默认为-1,表示没有限制。如果收敛前达到该值,则提前终止训练。
  • cache_size: 核函数缓存大小,可选参数,默认为200MB。

需要根据具体的情况,调整SVR的超参数以获得更好的性能和效果。

3、完整代码

import pandas as pd
from sklearn.svm import SVR# 加载数据
data = pd.read_csv('data.csv')# 训练SVR模型
X = data.index.values.reshape(-1, 1)
y = data['value'].values.reshape(-1, 1)
svr = SVR(kernel='rbf', gamma='scale', C=1.0, epsilon=0.1)
svr.fit(X, y)# 计算每个数据点的预测偏差
y_pred = svr.predict(X)
residuals = abs(y - y_pred)# 计算偏差的标准差
std_dev = residuals.std()# 计算阈值
threshold = 3 * std_dev# 找到异常值
mask = (residuals <= threshold).flatten()
clean_data = data.loc[mask]# 输出结果
print(clean_data)

测试报错:
Reshape your data either using array.reshape(-1, 1) 。
dataframe数据需要转换为array。
经测试:

X = df['X'].values.reshape(-1, 1)
y = np.array(df['y'])

测试结果:
在这里插入图片描述

相关文章:

支持向量回归删除异常值Python

1、支持向量回归&#xff08;SVR&#xff09;原理 支持向量回归&#xff08;Support Vector Regression&#xff0c;SVR&#xff09;不仅可以用于预测&#xff0c;还可以用于异常值检测。其基本思路是训练一个回归模型&#xff0c;通过对每个数据点进行预测&#xff0c;并计算…...

手把手开发一门程序语言JimLang (2)

根据爱因斯坦的相对论&#xff0c;物体的质量越大&#xff0c;时间过得越快&#xff0c;所以托更对于我的煎熬&#xff0c;远远比你们想象的还要痛苦…今天给大家来盘硬菜&#xff0c;也是前些时日预告过的JimLang的开发过程… Let’s go !!! 语法及解析 JimLang.g4 这里我们…...

DSF深度搜索时到底是如何回溯的(小tip)

这一段让我迷了两次&#xff0c;为什么回溯的时候&#xff0c;恢复了最后一位&#xff0c;往上递归一层之后&#xff0c;把最后一位填在它前一位&#xff0c;但是原本的前一位没有恢复&#xff0c;最后一位要怎么办&#xff1f;其实这还是递归没明白 也就是这一步是如何实现的 …...

Rust Web入门(八):打包发布

本教程笔记来自 杨旭老师的 rust web 全栈教程&#xff0c;链接如下&#xff1a; https://www.bilibili.com/video/BV1RP4y1G7KF?p1&vd_source8595fbbf160cc11a0cc07cadacf22951 学习 Rust Web 需要学习 rust 的前置知识可以学习杨旭老师的另一门教程 https://www.bili…...

synchronize优化偏向锁

偏向锁 轻量级锁在没有竞争时&#xff08;只有自己一个线程&#xff09;&#xff0c;仍然会尝试CAS替换mark word&#xff1b; 会造成一定的性能的损耗&#xff1b; JDK6之中引入了偏向锁进行优化&#xff0c;第一次使用时线程ID注入到Mark word中&#xff0c;之后重入不再进…...

算法习题之动态规划

动态规划习题1 打印n层汉诺塔从最左边移动到最右边的全部过程习题2 给你一个栈&#xff0c;请你逆序这个栈&#xff0c;不能申请额外的数据结构&#xff0c;只能使用递归函数。 如何实现?习题3 打印一个字符串的全部子序列&#xff0c;打印一个字符串的全部子序列&#xff0c;…...

顺序表【数据结构】

文章目录:star2:1. 顺序表概念:star2:2. 框架3. 基本功能3.1 头文件:star:3.2 初始化:star:3.3 扩容:star:3.4 打印:star:3.5 尾插:star:3.6 头插:star:3.7 尾删:star:3.8 头删:star:3.9 指定插入:star:3.10 指定删除:star:3.11 查找:star2:3.12 注意事项4. 顺序表的缺点&#…...

SNAP中根据入射角和干涉图使用波段计算器计算垂直形变--以门源地震为例

SNAP中根据入射角和相干图使用波段计算器计算垂直形变--以门源地震为例0 写在前面1 具体步骤1.1 准备数据1.2 在SNAP中打开波段运算Band Maths1.3 之前计算的水平位移displacement如下图数据的其他处理请参考博文在SNAP中用sentinel-1数据做InSAR测量&#xff0c;以门源地震为例…...

Ubuntu20.04中Docker安装与配置

一、安装 1、卸载可能存在的旧版本 sudo apt-get remove docker docker-engine docker-ce docker.io2、更新apt包索引 sudo apt-get update显示“正在读取软件包列表… 完成” 3、安装以下包以使apt可以通过HTTPS使用存储库(repository) sudo apt-get install -y apt-tran…...

pytorch权值初始化和损失函数

pytorch权值初始化和损失函数 权值初始化 梯度消失与爆炸 针对上面这个两个隐藏层的神经网络&#xff0c;我们求w2的梯度 可以发现&#xff0c;w2的梯度与H1&#xff08;上一层网络的输出&#xff09;有很大的关系&#xff0c;当h1趋近于0时&#xff0c;w2的梯度也趋近于0&am…...

maven将jar文件上传至本地仓库及私服

maven官方仓库有些依赖并不存在&#xff0c;现在项目都是maven直接获取jar&#xff0c;当maven获取不到时&#xff0c;需要我们把jar上传至maven仓库。已 ImpalaJDBC41.jar 文件为例&#xff0c;如&#xff1a;希望上传后&#xff0c;设置的依赖为&#xff1a;<dependency&g…...

前端学习第三阶段-第1、2章 JavaScript 基础语法

01第一章 JavaScript网页编程课前导学 1-1 JavaScript网页编程课前导学 02第二章 JavaScript 基础语法 2-1 计算机基础和Javascript介绍 01-计算机基础导读 02-编程语言 03-计算机基础 04-JavaScript初识导读 05-初始JavaScript 06-浏览器执行JS过程 07-JS三部分组成 08-JS三种…...

hibernate学习(二)

hibernate学习&#xff08;二&#xff09; 一、hibernate常见配置&#xff1a; 1.XML提示问题配置&#xff1a; 二、hibernate映射的配置&#xff1a; &#xff08;1&#xff09;class标签的配置&#xff1a; 标签用来建立类与表之间的映射关系属性&#xff1a; 1.name&…...

平安银行LAMBDA实验室负责人崔孝林:提早拿到下一个计算时代入场券

量子前哨重磅推出独家专题《“量子”百人科学家》&#xff0c;我们将遍访全球探索赋能“量子”场景应用的百位优秀科学专家&#xff0c;从商业视角了解当下各行业领域的“量子”最新研究成果&#xff0c;多角度、多维度、多层面讲述该领域的探索历程&#xff0c;为读者解析商业…...

linux下进不去adb

linux 进不去adb cat /sys/kernel/debug/usb/devices 查看是否有adb口 首先查看adb是否被识别成串口 option 如果被识别成串口 方法1&#xff1a; https://patchwork.kernel.org/project/linux-usb/patch/20180723140220.7166-1-romain.izard.progmail.com/ diff --git a/dri…...

【SPSS】多因素方差分析详细操作教程(附案例实战)

🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 方差分析概述 多因素方差分析原理...

我的投稿之旅

一、铁道科学与工程学报选择这个期刊的原因是&#xff1a;感觉影响因子较低&#xff0c;而且实验室有师兄师姐中过这个期刊&#xff0c;所以抱着试一试的心态投了。投稿之前需要去官网注册账号由于方向不一致&#xff0c;被退稿了“您的稿件内容不属于本刊刊载范畴&#xff0c;…...

51单片机DS18B20的使用

文章目录前言一、DS18B20介绍二、单总线协议三、DS18B20引脚说明四、DS18B20程序编写1.DS18B20复位函数2.DS18B20存在检测3.DS18B20读取一个bit和一个byte函数4.DS18B20写一个字节函数5.开始温度转换函数6.DS18B20初始化函数7.DS18B20读取温度函数五、代码测试总结前言 本篇文…...

Vue组件原理知识(1)

Vue 组件知识整理&#xff08;1&#xff09;文章目录Vue 组件知识整理&#xff08;1&#xff09;一、组件介绍1.1 传统方式与组件方式编写应用对比二、组件使用2.1 非单文件组件的使用**1. 组件的创建****2. 组件的注册****3. 组件的使用****4. Vue中使用组件的三大步骤总结***…...

Linux:IO库函数

目录标准库IO函数一、fopen二、fwrite三、fread四、fseek五、fclose在编写程序时&#xff0c;离不开IO操作&#xff0c;最常见的IO操作就是用printf函数进行打印&#xff0c;本文主要介绍的是封装后的IO库函数。 标准库IO函数 常使用的IO库函数如下&#xff1a; 函数作用fop…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...