当前位置: 首页 > news >正文

keras图片数字识别入门AI机器学习

通过使用mnist(AI界的helloworld)手写数字模型训练集,了解下AI工作的基本流程。

本例子,要基于mnist数据集(该数据集包含了【0-9】的模型训练数据集和测试数据集)来完成一个手写数字识别的小demo。

mnist数据集,图片大小是28*28的黑白。包含了6w 训练数据和1w验证数据。

麻雀虽小五脏俱全。通过这个CV类型的demo需求,我们会学到神经网络模型。

从数据加载,到数据预处理,再到训练模型,保存模型。然后再通过模型来预测我们输入的图片数字。

通过整个过程下来,对于像我这样初识AI深度学习者来说,可以有一个非常好的体感。

我们通过keras+tensorflow2.0来上手。

数据加载

keras 框架,提供了现成的方法来获取mnist数据集

(x_train_image, y_train_label), (x_test_image, y_test_label) = mnist.load_data()

这个方法会返回两组数据集
train_image,train_label ,训练数据集、分类标签
x_test_image, y_test_label,验证数据集、分类标签

要想让机器识别一个图片,需要对图片进行像素化,将像素数据转换成 张量 矩阵数据。

mnist.load_data() 返回的就是已经转换好的张量矩阵数据。

(在python中,通过NumPy多维数组表示。)

数据预处理

我们这个demo属于AI for CV 方向。

CV信息首先要像素化处理,拿到张量信息。

# 转换成一维向量 28*28=784
x_train = x_train_image.reshape(60000, 784)
x_test = x_test_image.reshape(10000, 784)# 标准化0-1
x_Test_normalize = x_test.astype('float32') / 255
x_Train_normalize = x_train.astype('float32') / 255

通过reshape方法将三维转换成二维,同时通过量化将计算数据缩小但是不影响模型训练识别。
(mnist图片数据是黑白,位深为8位,0-255表示像素信息)。

mnist

通过可视化,我们能大概看到图片的数字特征是怎么被感知到的。

同时将label标签数据转换成0-1的矩阵。

# 将训练集和测试集标签都进行独热码转化
y_TrainOneHot = np_utils.to_categorical(y_train_label)
y_TestOneHot = np_utils.to_categorical(y_test_label)

构建模型

# 建立Sequential 模型
model = Sequential()
# 建立输入层、隐藏层
model.add(Dense(units=256,input_dim=784,kernel_initializer='normal',activation='relu'))
# 建立输出层
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))# 定义模型训练参数
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

定义神经网络模型参数。这里每一个参数都是一个非常深的学科,但是工程使用了解下就可以了。

训练模型

# 开始训练
train_history = model.fit(x=x_Train_normalize, y=y_TrainOneHot,validation_split=0.2, epochs=10, batch_size=200, verbose=2)
# 显示训练过程
show_train_history(train_history, 'accuracy', 'val_accuracy')

mnist

随着训练次数不断增加,整个精确度也越来越高。

我们看下训练过程的日志。

Epoch 1/10
240/240 - 3s - loss: 0.1211 - accuracy: 0.8309 - val_loss: 0.0564 - val_accuracy: 0.9228 - 3s/epoch - 11ms/step
Epoch 2/10
240/240 - 1s - loss: 0.0492 - accuracy: 0.9312 - val_loss: 0.0392 - val_accuracy: 0.9470 - 831ms/epoch - 3ms/step
Epoch 3/10
240/240 - 1s - loss: 0.0360 - accuracy: 0.9495 - val_loss: 0.0313 - val_accuracy: 0.9570 - 890ms/epoch - 4ms/step
Epoch 4/10
240/240 - 1s - loss: 0.0286 - accuracy: 0.9598 - val_loss: 0.0278 - val_accuracy: 0.9610 - 900ms/epoch - 4ms/step
Epoch 5/10
240/240 - 1s - loss: 0.0239 - accuracy: 0.9675 - val_loss: 0.0243 - val_accuracy: 0.9679 - 1s/epoch - 5ms/step
Epoch 6/10
240/240 - 1s - loss: 0.0204 - accuracy: 0.9723 - val_loss: 0.0224 - val_accuracy: 0.9698 - 1s/epoch - 5ms/step
Epoch 7/10
240/240 - 1s - loss: 0.0177 - accuracy: 0.9772 - val_loss: 0.0210 - val_accuracy: 0.9714 - 1s/epoch - 4ms/step
Epoch 8/10
240/240 - 1s - loss: 0.0155 - accuracy: 0.9805 - val_loss: 0.0201 - val_accuracy: 0.9729 - 984ms/epoch - 4ms/step
Epoch 9/10
240/240 - 1s - loss: 0.0137 - accuracy: 0.9833 - val_loss: 0.0189 - val_accuracy: 0.9742 - 1s/epoch - 5ms/step
Epoch 10/10
240/240 - 1s - loss: 0.0122 - accuracy: 0.9861 - val_loss: 0.0182 - val_accuracy: 0.9751 - 975ms/epoch - 4ms/step

可以看到,每一轮训练,loss 的值在逐步变小,accuracy 在逐步增加。

每一次训练,模型中的损失函数在计算出一个参数给到优化器进行反向传播,不断的调整神经元的权重。

模型训练好之后,需要用测试数据集来验证模型的准确度。

scores = model.evaluate(x_Test_normalize, y_TestOneHot)
print('accuracy=', scores[1])
accuracy= 0.975600004196167

保存模型

mode.save()
model.save('model.h5') #也可以保存到具体的文件中

保存的模型里面具体是什么,了解神经网络原理之后,大概能明白。其实模型里最重要的是 神经元的权重值
这个demo的模型我放到这里了。
(https://gitee.com/wangqingpei/blogimages/blob/master/mnist-helloworld/test/model-mnist/model.h5)

预测数据

我们准备几个手写的数字测试下。
mnist

读取本地图片文件

def get_local_image():img = Image.open('3.png')img = img.convert('L').resize((28, 28))img_array = np.array(img)# 将像素值转换为0-1之间的浮点数img_array = img_array.astype('float32') / 255.0img_array_result = np.reshape(img_array, (1, 784))return img_array_result

mnist

加载模型进行预测

def autoNumberWord():model = load_model("/Users/wangqingpei/Downloads/test/model-mnist/model.h5")img = get_local_image()prediction = model.predict(img)prediction_result = np.argmax(prediction)print('本地文件预测:', prediction_result)
240/240 - 1s - loss: 0.0130 - accuracy: 0.9843 - val_loss: 0.0183 - val_accuracy: 0.9755 - 848ms/epoch - 4ms/step
Epoch 10/10
240/240 - 1s - loss: 0.0116 - accuracy: 0.9866 - val_loss: 0.0177 - val_accuracy: 0.9761 - 873ms/epoch - 4ms/step
313/313 [==============================] - 1s 2ms/step - loss: 0.0167 - accuracy: 0.9767
accuracy= 0.9767000079154968
1/1 [==============================] - 0s 116ms/step
Backend MacOSX is interactive backend. Turning interactive mode on.
本地文件预测: 3

学会使用AI数字助手 chartGPT

在学习过程中,遇到问题要改变习惯,用chartGPT。~_~

在学习这个demo的时候,关于加载本地图片的地方我搞了半天不行,后来求助chartGPT,还是很方便的。

mnist
mnist
mnist

未来AI工具肯定是越来越产品化,易使用。
但是,要想跟AI对话,需要对特定的领域有一定的理解。Prompt Engineer 也一定是趋势。

相关文章:

keras图片数字识别入门AI机器学习

通过使用mnist(AI界的helloworld)手写数字模型训练集,了解下AI工作的基本流程。 本例子,要基于mnist数据集(该数据集包含了【0-9】的模型训练数据集和测试数据集)来完成一个手写数字识别的小demo。 mnist…...

使用qt编写一个程序,伪造一个ip访问一个网站。

你好,这是Bing。😊 根据网络搜索结果,使用qt编写一个程序,伪造一个ip访问一个网站的方法可能有以下几种: - 使用X-Forwarded-For请求头来伪造客户端的真实ip地址。这种方法需要在发送请求时添加X-Forwarded-For: 伪造…...

探访人工智能领跑者:纷享销客携手30+TOP高科技企业走进旷视科技

拥有全球规模领先的计算机视觉研究院; 揽获28项世界顶级AI竞赛冠军; 世界级人工智能公司; 没错,它就是人工智能行业的务实者和领跑者,旷视科技。 3月3日,北京软件和信息服务业协会联合纷享销客,…...

UTC、TimeZone、TimeStamp

UTC :Universal Time Coordinated,世界协调时,又称世界标准时间。与UTC time对应的是各个时区的local time,东N区的时间比UTC时间早N个小时,因此UTC time N小时 即为东N区的本地时间;而西N区时间比UTC时间…...

探究SMC局部代码加密技术以及在CTF中的运用

前言 近些日子在很多线上比赛中都遇到了smc文件加密技术,比较出名的有Hgame杭电的比赛,于是我准备实现一下这项技术,但是在网上看了很多文章,发现没有讲的特别详细的,或者是无法根据他们的方法进行实现这项技术,因此本篇文章就是…...

免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发人工智能企业

免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发。箱信息识别及铅封号识别功能免费,顶尖AI集装箱识别率99.98%,全球No.1集装箱人工智能企业CIMCAI打造。中国上海人工智能…...

pdf多页合并为一页方法总结,你觉得哪个最好?

PDF格式的文件在现代办公中是不可或缺的,许多人在工作中需要频繁处理PDF文档。然而,当我们需要阅读多个PDF文件时,不断切换不同的文件并一个一个地打开查阅会非常麻烦。为了提高阅读效率,人们一般会将pdf多页合并为一页。那么&…...

每日一读【基金/股票投资的常识和纪律】

个人投资的几点总结,我时常拿来阅读,警示自己: *基于常识,独立思考。 *投资以年为单位,5年一周期。 *下跌时的信心比金子还贵,永远要记住:风险是涨上去的,机会…...

阶段二12_面向对象高级_继承3

知识点内容: 抽象类 模板设计模式 final关键字 一.抽象类 (1)抽象类概述 抽象方法:将共性的行为(方法)抽取到父类之后,发现该方法的实现逻辑 无法在父类中给出具体明确,该方法就可以定义为抽象方法。 抽…...

C++ STL:string类的概述及常用接口说明

目录 一. 什么是STL 二. string类的概述 三. string类的常用接口说明 3.1 字符串对象创建相关接口(构造函数) 3.2 字符串长度和容量相关接口 3.3 字符访问相关接口函数 3.4 字符串删改相关接口函数 3.5 字符查找和子串相关接口函数 3.6 迭代器相…...

java Math类 和 System类 详解(通俗易懂)

Math类介绍Math类常用方法及演示System类简介System类常用方法及演示一、前言本节内容是我们《API-常用类》专题的第四小节了。本节内容主要讲Math类和System类, 内容包括Math类介绍、Math类常用方法、System类介绍,System类常用方法。该小节内容基本不涉…...

软件回归测试是什么?

一、软件回归测试是什么? 软件回归测试作为软件生命周期的一个组成部分,在整个软件测试过程中占有很大的工作量比重,软件开发的各个阶段都会进行多次回归测试。回归测试是指修改了旧代码后,重新进行测试以确认修改没有引入新的错误或导致其…...

TwinCAT3中ModbusTCP Server和C# Client连接

目录 一、硬件环境 1、设置PLC的ip地址 2、ModbusTCP软件安装 3、PLC操作系统防火墙设置 4、网络助手连接PLC 二、创建PLC工程 1、创建寄存器读写变量 2、添加ModbusTCP授权 3、激活和运行工程 三、ModbusTCP数据协议说明 1、写单个寄存器 2、读寄存器 (1&…...

【上传项目代码到Git详细步骤】

1.下载安装Git到电脑上(这里我之前已经安装好了,就不细说了)2.进入控制台安装好后右键点击桌面空白部分会多出两个菜单选项,点击第二个Git Bash Here(点击第一个你会爆炸)会弹出一个git控制台,如…...

C++回顾(十五)—— 类模板

15.1 为什么要有类模板 类模板用于实现类所需数据的类型参数化类模板在表示如数组、表、图等数据结构显得特别重要,这些数据结构的表示和算法不受所包含的元素类型的影响 15.2 单个类模板语法 注意:类模板的创建对象一定要显示调用(指明类型…...

【JavaEE初阶】第四节.文件操作 和 IO (下篇)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言三、文件内容的操作 3.1 读文件 3.1.1 使用字节流读文件 3.2 写文件 3.2.1 使用字节流写文件 …...

华为OD机试用Python实现 -【分解质因数】 2023Q1A

华为OD机试题 本篇题目:分解质因数题目示例 1输入输出示例 2输入输出Code代码编写思路最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南...

博客项目

文章目录1. 创建项目2. 数据库设计3. 前置任务3.1 拦截器3.2 统一数据格式3.3 创建一个 Constant3.4 统一异常处理3.5 密码加密4. 功能实现4.1 登录功能4.2 注册功能4.3 博客列表页 (功能实现)4.3.1 左侧框4.3.2 右侧框 (分页功能 页面显示)4.4 博客详情…...

C++基础了解-20-C++类 对象

C 类 & 对象 一、C 类 & 对象 C 在 C 语言的基础上增加了面向对象编程,C 支持面向对象程序设计。类是 C 的核心特性,通常被称为用户定义的类型。 类用于指定对象的形式,它包含了数据表示法和用于处理数据的方法。类中的数据和方法…...

多态与虚(函数)表

前言续接上回(继承),我们了解了继承是如何通过虚基表,来解决派生类和父类有相同的成员变量的情况,但是类和对象中可不只有成员变量,如果成员函数也有同名,更或者如果我们想在访问不同情况&#…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言: 类加载器 1. …...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

OCR MLLM Evaluation

为什么需要评测体系?——背景与矛盾 ​​ 能干的事:​​ 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。​​干不了的事:​​ 碰到复杂表格(合并单元…...