JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测
JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测
目录
- JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测
- 分类效果
- 基本介绍
- 程序设计
- 参考资料
分类效果








基本介绍
1.Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测,TCN-BiGRU-Multihead-Attention;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入12个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测。
% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 读取数据
res = xlsread('data.xlsx');%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%% 划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本mid_size = size(mid_res, 1); % 得到不同类别样本个数mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train);
t_test = categorical(T_test );T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
相关文章:
JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测
JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测 目录 JCR一区级 | Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现TCN-BiGRU-MATT时间卷积双向门控循环单元多…...
游戏心理学Day01
心理学 心理学是一门研究心理过程和行为及其如何受有机体的生理,心理状态和外部影响的科学 心理学不是常识的代名词,心理学分为基础,心理学和应用心理学基础,心理学研究的目的在于描述,解释,预测和控制行…...
错误模块路径: ...\v4.0.30319\clr.dll,v4.0.30319 .NET 运行时中出现内部错误,进程终止,退出代码为 80131506。
全网唯一解决此BUG的文章!!! 你是否碰到了以下几种问题?先说原因解决思路具体操作1、首先将你C:\Windows\Microsoft.NET\文件夹的所有者修改为你当前用户,我的是administrator。2、修改当前用户权限。3、重启电脑4、删…...
005 CentOS 7.9 RabbitMQ安装及配置
https://github.com/rabbitmq/rabbitmq-server/releases https://www.rabbitmq.com/docs/download https://packagecloud.io/rabbitmq/rabbitmq-server https://www.erlang-solutions.com/downloads/ https://www.erlang.org/ 文章目录 卸载erlerl版本安装与下载版本不匹配正…...
Xcode 15 libarclite 缺失问题
升级到Xcode 15运行项目报错,报错信息如下: SDK does not contain libarclite at the path /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/arc/libarclite_iphonesimulator.a; try increasing the minimum d…...
绘画智能体分享
这是您请求的故宫雪景图,角落有一只可爱的胖猫,采用了水墨画风格,类似于张大千的作品。希望您喜欢这幅画! 🎨 选项 1【转变风格】——将这幅画转变为梵高的后印象派风格,增添一些梵高特有的笔触和色彩。 &…...
7_2、C++程序设计进阶:数据共享
数据与函数 数据与函数局部变量全局变量类的数据成员 类的静态成员静态数据成员静态函数成员 友元友元函数友元类 函数之间实现数据共享有以下几种方式:局部变量、全局变量、类的数据成员、类的静态成员和友元。 如何共享局部变量呢? 在主调函数和被调…...
d2-crud-plus 使用小技巧(五)—— 搜索时间(或下拉列表)后,点击X清除按钮后返回值为null,导致异常
问题 使用vue2elementUId2-crud-plus,时间组件自动清除按钮,点击清除按钮后对应的值被设置为null,原本应该是空数组([]),导致数据传到后端后报错。不仅适用于搜索,表单一样有效果。 解决方法 …...
ChatGPT成知名度最高生成式AI产品,使用频率却不高
5月29日,牛津大学、路透社新闻研究所联合发布了一份生成式AI(AIGC)调查报告。 在今年3月28日—4月30日对美国、英国、法国、日本、丹麦和阿根廷的大约12,217人进行了调查,深度调研他们对生成式AI产品的应用情况。 结果显示&…...
R19 NR移动性增强概况
随着5G/5G-A技术不断发展和业务需求的持续增强,未来网络的部署将不断向高频演进。高频小区的覆盖范围小,用户将面临更为频繁的小区选择、重选、切换等移动性过程。 为了提升网络移动性能和保障用户体验,移动性增强一直是3GPP的热点课题。从NR…...
C语言:如何写文档注释、内嵌注释、行块注释?
技术答疑流程 扫描二维码,添加个人微信;支付一半费用,获取答案;如果满意,则支付另一半费用; 知识点费用:10元 项目费用:如果有项目任务外包需求,可以微信私聊...
Turtle中circle用法详解
在Python的Turtle图形库中,circle方法是一个非常灵活的工具,它允许我们以简单的方式绘制圆或圆的一部分。本文将深入探讨circle方法,特别关注radius和extent参数的用途及其正负值的意义。 一、circle方法概览 首先,让我们了解一…...
stack和queue(1)
一、stack的简单介绍和使用 1.1 stack的介绍 1.stack是一种容器适配器,专门用在具有先进后出,后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入和弹出操作。 2.stack是作为容器适配器被实现的,容器适配器即是…...
前端3剑客(第1篇)-初识HTML
100编程书屋_孔夫子旧书网 当今主流的技术中,可以分为前端和后端两个门类。 前端:简单的理解就是和用户打交道 后端:主要用于组织数据 而前端就Web开发方向来说, 分为三门语言, HTML、CSS、JavaScript 语言作用HT…...
植被变化趋势线性回归以及可视化
目录 植被变化线性回归ee.Reducer.linearFit().reduce()案例:天水市2004-2023年EVI线性回归趋势在该图中,使用了从红色到蓝色的渐变来表示负趋势到正趋势。红色代表在某段时间中,植被覆盖减少,绿色表示持平,蓝色表示植被覆盖增加。 植被变化线性回归 该部分参考Google…...
大话设计模式学习笔记
目录 工厂模式策略模式备忘录模式(快照模式)代理模式单例模式迭代器模式访问者模式观察者模式解释器模式命令模式模板方法模式桥接模式适配器模式外观模式享元模式原型模式责任链模式中介者模式装饰模式状态模式 工厂模式 策略模式 核心:封装…...
MiniMax公司介绍
MiniMax是一家专注于通用人工智能技术的科技公司,成立于2021年12月。公司致力于成为通用人工智能时代基础设施建设者和内容应用创造者,积极投身于中国人工智能技术高速发展的时代大潮。MiniMax的团队由多位在人工智能领域有着丰富经验的专家组成…...
lucene 9.10向量检索基本用法
Lucene 9.10 中的 KnnFloatVectorQuery 是用来执行最近邻(k-Nearest Neighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是 KnnFloatVectorQuery 的基本用法和代码示例。 1. 索引向量字段 首先…...
【2023百度之星初赛】跑步,夏日漫步,糖果促销,第五维度,公园,新材料,星际航行,蛋糕划分
目录 题目:跑步 思路: 题目:夏日漫步 思路: 题目:糖果促销 思路: 题目:第五维度 思路: 题目:公园 思路: 新材料 思路: 星际航行 思路…...
vs2019 QT UI 添加新成员或者控件代码不提示问题解决方法
右键点击头文件,添加ui的头文件 添加现有项 找到uic目录的头文件 打开ui,QtWidgetsApplication2.ui,进行测试 修改一个名字: 重点: 设置一个布局: 点击生成解决方案: 以后每次添加控件后,记得点击保存 这样…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
