当前位置: 首页 > news >正文

【TensorFlow深度学习】经典卷积网络架构回顾与分析

经典卷积网络架构回顾与分析

      • 经典卷积网络架构回顾与分析:从AlexNet到ResNet、VGGLeNet、ResNet、DenseNet的深度探索
        • AlexNet ——深度学习的破冰点火
        • VGGNet — 简洁的美
        • ResNet — 深持续深度的秘钥
        • DenseNet — 密集大成塔
        • 实战代码示例:ResNet-50模型
        • 结语

经典卷积网络架构回顾与分析:从AlexNet到ResNet、VGGLeNet、ResNet、DenseNet的深度探索

在深度学习的浩瀚海中,卷积神经网络(CNN)无疑是那颗璀璨的明珠,尤其在图像识别领域。本文将带您穿越时光隧道,从AlexNet至现代,细数经典架构的变迁,深度解析ResNet、VGGLeNet、ResNet、DenseNet,洞悉其设计精髓,领略深度学习之美。

AlexNet ——深度学习的破冰点火

2012年,Yann LeCun和Geoffrey Hinton等人推出了AlexNet,一个8层的卷积网络,其在ImageNet竞赛上大放异彩,错误率降低至15.4%,开启了深度学习的新纪元年。AlexNet首次使用了ReLU激活函数,最大池化,以及局部连接层,降低了过拟合风险,提升了模型效率。

VGGNet — 简洁的美

2014年,VGGNet,Oxford大学Simonyan Simonyan和Andrei Zisserman的作品,以简洁的网络设计(VGG16、VGG13、VGG16等)震撼了界。VGGNet通过连续的卷积层堆叠加深,使用固定大小(如3x3x3)的滤波器,最小化参数量,同时保持了深度,性能优异,错误率降至6.7%。VGGNet的简单性、高效,成为了后续模型设计的基准。

ResNet — 深持续深度的秘钥

2015年,微软的何凯明等人的ResNet(ResNet)彻底改变了深度游戏规则,引入了残差分层(Skip Connection),允许信息直接跳过层间流动,解决了过拟合,使得网络深度激增,甚至达152层,错误率仅3.57%。ResNet的创新不仅在深度,还在于其训练策略,展示了模型容量与泛化的平衡哲学。

DenseNet — 密集大成塔

2016年,Huang、Liu、Weinberger的DenseNet提出了一种新策略,通过在层间密集连接所有前层输出,每个层的特征图,形成一个“特征的聚合”,这极大提升了信息流,模型的利用效率,降低了参数,错误率至3.5%。DenseNet的创新在于信息的高效利用,使得模型在有限资源下表现出色。

实战代码示例:ResNet-50模型
import tensorflow as tf
from tensorflow.keras import layers, models, regularizersdef resnet_block(filters, strides=1):shortcut = layers.Conv2D(filters, 1, 1, strides=strides=strides)(shortcut)shortcut = layers.BatchNormalization()(shortcut)shortcut = layers.Activation('relu')(')(shortcutshortcut)conv1 = layers.Conv2D(filters, 3, strides=strides=strides)(shortcut)conv1 = layers.BatchNormalization()(conv1)conv1 = layers.Activation('relu')(')(conv1)conv2 = layers.Conv2D(filters, 3)(conv1)conv2 = layers.BatchNormalization()(conv2)output = layers.Add()([shortcut, output])output = layers.Activation('relu')(')(output)return outputdef build_resnet():input_shape = (224, 24, 3)model = models.Sequential()model.add(layers.Conv2D(64, 7, strides=2, padding='same', input_shape=input_shape=input_shape))model.add(layers.BatchNormalization())model.add(layers.Activation('relu')model.add(layers.MaxPooling2D(pool_size=3, strides=2))model.add(resnet(64, strides=1))model.add(resnet(64, strides=2))model.add(resnet(128, strides=2))model.add(layers.GlobalAveragePooling2D())model.add(layers.Dense(10, activation='softmax'))return modelresnet = build_resnet()
resnet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
结语

从AlexNet的破冰到VGG的简洁,ResNet的深度,再到DenseNet的密集信息聚合,每一次变革都是深度学习对效率与性能的探索,对泛化边界的拓宽。经典架构不仅是学习的基石,更是创新的启迪,每一次回望未来。通过代码,我们不仅理解了这些架构的精髓,更在实践中感受了深度学习的奥秘。

相关文章:

【TensorFlow深度学习】经典卷积网络架构回顾与分析

经典卷积网络架构回顾与分析 经典卷积网络架构回顾与分析:从AlexNet到ResNet、VGGLeNet、ResNet、DenseNet的深度探索AlexNet ——深度学习的破冰点火VGGNet — 简洁的美ResNet — 深持续深度的秘钥DenseNet — 密集大成塔实战代码示例:ResNet-50模型结语…...

Salesforce推出Einstein 1 Studio:用于自定义Einstein Copilot并将人工智能嵌入任何CRM应用程序的低代码人工智能工具

一、关键要点 1. Salesforce管理员和开发人员现在可以在每个Salesforce应用程序和工作流程中构建、定制和嵌入人工智能,包括Einstein Copilot。 2. Einstein 1 Studio与数据云深度集成,通过对客户数据和元数据的全面理解,解锁并统一被捕获的…...

点赋科技:建设智能饮品高地,打造数字化产业先锋

在当今数字化时代的浪潮中,点赋科技以其敏锐的洞察力和卓越的创新能力,致力于建设智能饮品高地,打造数字化产业先锋。 点赋深知智能饮品机对于推动社会进步和满足人们日益增长的需求的重要性。因此,他们投入大量资源和精力&#x…...

ORACLE RAC的一些基本理论知识

一 . Oracle RAC 的发展历程 1. Oracle Parallel Server (OPS) 早期阶段:Oracle 6 和 7 Oracle Parallel Server(OPS)是 Oracle RAC 的前身。 通过多个实例并行访问同一个数据库来提高性能。 共享磁盘架构,利用分布式锁管理&am…...

CMake的作用域:public/private/interface

在 CMake 中,public、private和 interface是用来指定目标属性的作用域的关键字,这三个有什么区别呢?这些关键字用于控制属性的可见性和传递性,影响了目标之间的依赖关系和属性传递。 public 如果在一个目标上使用 public关键字时…...

设计模式基础知识点(七大原则、UML类图)

Java设计模式(设计模式七大原则、UML类图) 设计模式的目的设计模式七大原则单一职能原则(SingleResponsibility)接口隔离原则(InterfaceSegreation)依赖倒转原则(DependenceInversion&#xff0…...

Android开机动画的结束过程BootAnimation(基于Android10.0.0-r41)

文章目录 Android 开机动画的结束过程BootAnimation(基于Android10.0.0-r41) Android 开机动画的结束过程BootAnimation(基于Android10.0.0-r41) 路径frameworks/base/cmds/bootanimation/bootanimation_main.cpp init进程把我们的BootAnimation的二进制文件拉起来了&#xf…...

微软远程连接工具:Microsoft Remote Desktop for Mac 中文版

Microsoft Remote Desktop 是一款由微软开发的远程桌面连接软件,它允许用户从远程地点连接到远程计算机或虚拟机,并在远程计算机上使用桌面应用程序和文件。 下载地址:https://www.macz.com/mac/5458.html?idOTI2NjQ5Jl8mMjcuMTg2LjEyNi4yMz…...

【安规介绍】

文章目录 一、基础知识安规上的六类危险的防护:安全电压漏电流接触电流能量问题:火灾问题:热问题结构问题阻燃等级绝缘等级:对接地系统的要求:结构要求:电气要求: 二、设计的关键电气绝缘距离电气爬电距离:…...

[sylar]后端学习:配置环境(一)

1.介绍 基于sylar大神的C高性能后端网络框架来进行环境配置和后续学习。网站链接:sylar的Linux环境配置 2.下载 按照视频进行下载,并进行下载,并最好还要下载一个vssh的软件。可以直接在网上搜索即可。 sylar_环境配置,vssh下…...

XDMA原理及其应用和发展

XDMA原理 XDMA的主要原理是通过直接访问主机内存,实现数据的快速传输。在传统的DMA(Direct Memory Access)技术中,数据传输需要经过CPU的干预,而XDMA可以绕过CPU,直接将数据从外设读取到主机内存或者从主机…...

携程梁建章:持续投资创新与AI,开启旅游行业未来增长

5月30至31日,携程集团在上海和张家界举办Envision 2024全球合作伙伴大会,邀请超50个国家和地区的1600余名外籍旅游业嘉宾与会,共同探讨中国跨境旅游市场发展机遇,讲好中国故事。 携程国际业务增速迅猛,创新与AI解锁未…...

【网络安全的神秘世界】在win11搭建pikachu靶场

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 下载pikachu压缩包 https://github.com/zhuifengshaonianhanlu/pikachu 下载好的pikachu放在phpstudy_pro/www目录下 创建pikachu数据库 打开phpstudy软件…...

基于Java的零食管理系统的设计与实现(论文+源码)_kaic

摘 要 随着科技的进步,以及网络的普及,都为人们的生活提供了极大的方便。因此,在管理”三姆”宿舍在线零食商店时,与现代的网络联系起来是非常必要的,本次设计的系统在研发过程中应用到了Java技术,这在一定…...

【案例实操】银河麒麟桌面操作系统实例分享,V10SP1重启后网卡错乱解决方法

1.问题现象 8 个网口, 命名从 eth1 开始到 eth8。 目前在系统 grub 里面加了 net.ifnames0 biosdevname0 参数, 然后在 udev 规则中加了一条固定网卡和硬件 pci 设备号的规则文件。 最后在 rc.local 中加了两条重新安装网卡驱动的命令( rmmod…...

初级前端开发岗

定位: 日常任务的辅助执行者,前端基础建设的参与者。 素质要求: 是否遵循部门敏捷流程、规范、P0制度;具备良好的沟通和协作能力;负责日常迭代任务的落地执行;拥有较强的执行力,能够灵活解决问题; 职责&#xff1a…...

颠仆流离学二叉树2 (Java篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…...

柏林自由大学研究团队《Ecology Letters 》揭示AMF在植物对全球变化响应的作用

全球环境变化正在影响陆生植物生长。植物已经进化出各种策略来应对这些挑战,其中之一是与丛枝菌根真菌(AMF)形成共生关系(高达80%的陆生植物物种)。AMF为寄主植物提供各种益处,例如营养吸收、耐受性、食草动物防御和抗病能力,以换取糖和脂质(…...

libevent源码跨平台编译(windows/macos/linux)

1.windows编译: 克隆: git clone https://github.com/libevent/libevent.git 克隆成功 生成makefile 生成成功 默认不支持OpenSSL,MbedTLS,ZLIB这三个库 编译: cmake --build . --config release...

idea+tomcat+mysql 从零开始部署Javaweb项目(保姆级别)

文章目录 新建一个项目添加web支持配置tomcat优化tomcat的部署运行tomcatidea数据库连接java连接数据库 新建一个项目 new project;Java;选择jdk的版本;next;next;填写项目名字,选择保存的路径;…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

【AI学习】三、AI算法中的向量

在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)&#xff…...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...