模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage)
模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage)


大信号分析
对M1
V x ≥ V i n − V T H 1 V x = V B − V G S 2 V B ≥ V i n − V T H 1 + V G S 2 V_{x}\geq V_{in}-V_{TH1}\quad V_{x}=V_{B}-V_{GS2}\\V_{B}\geq V_{in}-V_{TH1}+V_{GS2} Vx≥Vin−VTH1Vx=VB−VGS2VB≥Vin−VTH1+VGS2
对M2
V o u t ≥ V B − V T H 2 V o u t ≥ V i n − V T H 1 + V G S 2 − V T H 2 V o u t ≥ V O D 1 + V O D 2 \begin{aligned}&V_{out}\geq V_{B}-V_{TH2}\\&V_{out}\geq V_{in}-V_{TH1}+V_{GS2}-V_{TH2}\\&V_{out}\geq V_{OD1}+V_{OD2}\end{aligned} Vout≥VB−VTH2Vout≥Vin−VTH1+VGS2−VTH2Vout≥VOD1+VOD2

输入输出电阻
W h e n V i n < V T H 1 , M 1 a n d M 2 a r e o f f , V o u t = V D D , V x = V B − V T H 2 \begin{aligned}&\mathrm{When~}V_{in}<V_{TH1},\mathrm{M}_{1}\mathrm{~and~}\mathrm{M}_{2}\mathrm{~are~off},V_{out}=V_{DD},V_{x}=V_{B}-V_{TH2}\end{aligned} When Vin<VTH1,M1 and M2 are off,Vout=VDD,Vx=VB−VTH2
W h e n V i n > V T H 1 , V o u t d r o p s , − V G S 2 increases, resulting in a drop of V X \begin{aligned}&\mathrm{When~}V_{\mathrm{in}}>V_{\mathrm{TH}1},V_{\mathrm{out}}\mathrm{drops},\\&-V_{GS2}\text{increases, resulting in a drop of }V_{X}\end{aligned} When Vin>VTH1,Voutdrops,−VGS2increases, resulting in a drop of VX

R o u t = [ 1 + ( g m 2 + g m b 2 ) r O 2 ] r O 1 + r O 2 = r O 1 + r O 2 + ( g m 2 + g m b 2 ) r O 2 r O 1 R_{out}=[1+(g_{m2}+g_{mb2})r_{O2}]r_{O1}+r_{O2}\\=r_{O1}+r_{O2}+(g_{m2}+g_{mb2})r_{O2}r_{O1} Rout=[1+(gm2+gmb2)rO2]rO1+rO2=rO1+rO2+(gm2+gmb2)rO2rO1
i f g m r O > > 1 , t h e n R o u t ≈ ( g m 2 + g m b 2 ) r O 2 r O 1 ≈ g m 2 r O 2 r O 1 if \ g_{m}r_{O}>>1,\quad\mathrm{then}\quad R_{out}\approx(g_{m2}+g_{mb2})r_{O2}r_{O1}\approx g_{m2}r_{O2}r_{O1} if gmrO>>1,thenRout≈(gm2+gmb2)rO2rO1≈gm2rO2rO1

R o u t ≈ ( g m 3 + g m b 3 ) r O 3 R S ≈ g m 3 r O 3 R S ‾ R S ≈ g m 2 r O 2 r O 1 → R o u t ≈ g m 3 r O 3 ⋅ g m 2 r O 2 ⋅ r o 1 \begin{aligned}&R_{out}\approx(g_{m3}+g_{mb3})r_{O3}R_{S}\approx\underline{g_{m3}r_{O3}R_{S}}\\&R_{S}\approx g_{m2}r_{O2}r_{O1}\\&\to R_{out}\approx g_{m3}r_{O3}\cdot g_{m2}r_{O2}\cdot r_{o1}\end{aligned} Rout≈(gm3+gmb3)rO3RS≈gm3rO3RSRS≈gm2rO2rO1→Rout≈gm3rO3⋅gm2rO2⋅ro1
小信号分析
增益


A ν = − g m 1 R D A_{\nu}=-g_{m1}R_{D} Aν=−gm1RD
如若是电流源负载

A v = − G m r o u t A_v=-G_mr_{out} Av=−Gmrout
G m ≈ g m 1 G_m{\approx}g_{m1} Gm≈gm1
A ν ≈ − g m 1 ⋅ g m 2 r o 2 r o 1 = − g m 1 r o 1 ⋅ g m 2 r o 2 A_{\nu}\approx-g_{m1}\cdot g_{m2}r_{o2}r_{o1}=-g_{m1}r_{o1}\cdot g_{m2}r_{o2} Aν≈−gm1⋅gm2ro2ro1=−gm1ro1⋅gm2ro2
可以结合课本3.21去理解

g m = 2 I D μ n C o x W L r o = 1 λ I D A i n t = g m r o g_{m}=\sqrt{2I_{\mathrm{D}}\mu_{\mathrm{n}}C_{\mathrm{ox}}\frac{W}{L}}\\r_{\mathrm{o}}=\frac{1}{\lambda I_{\mathrm{D}}}\\A_{\mathrm{int}}=g_{m}r_{\mathrm{o}} gm=2IDμnCoxLWro=λID1Aint=gmro

g m 1 = g m 2 r o l = 4 r o A i n t l = 2 A i n t g_{m1}=\frac{g_{\mathrm{m}}}{2}\\r_{\mathrm{ol}}=4r_{\mathrm{o}}\\A_{\mathrm{intl}}=2A_{\mathrm{int}} gm1=2gmrol=4roAintl=2Aint

g m 2 = g m r o 2 = A i n t r o A int 2 = A int 2 g_{m2}=g_{m}\\r_{\mathrm{o2}}=A_{\mathrm{int}}r_{\mathrm{o}}\\A_{\operatorname{int}2}=A_{\operatorname{int}}^2 gm2=gmro2=AintroAint2=Aint2
用PMOS cascode电流源作负载

r o u t n ≈ g m 2 r o 2 ⋅ r o 1 r o u t p ≈ g m 3 r o 3 ⋅ r o 4 \begin{aligned}r_{outn}&\approx g_{m2}r_{o2}\cdot r_{o1}\\r_{outp}&\approx g_{m3}r_{o3}\cdot r_{o4}\end{aligned} routnroutp≈gm2ro2⋅ro1≈gm3ro3⋅ro4
A ν ≈ − g m 1 ⋅ ( r o u t n ∥ r o u t p ) ≈ − g m 1 ⋅ ( g m 3 r o 3 ⋅ r o 4 ∥ g m 2 r o 2 ⋅ r o 1 ) \begin{aligned}A_{\nu}&\approx-g_{m1}\cdot(r_{outn}\parallel r_{outp})\\&\approx-g_{m1}\cdot(g_{m3}r_{o3}\cdot r_{o4}\parallel g_{m2}r_{o2}\cdot r_{o1})\end{aligned} Aν≈−gm1⋅(routn∥routp)≈−gm1⋅(gm3ro3⋅ro4∥gm2ro2⋅ro1)
V o u t max ≤ V D D − V O D 3 − V O D 4 V_{out\max}\leq V_{DD}-V_{OD3}-V_{OD4} Voutmax≤VDD−VOD3−VOD4
V o u t , m i n ≥ V O D 1 + V O D 2 V_{out,min}\geq V_{OD1}+V_{OD2} Vout,min≥VOD1+VOD2

相关文章:
模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage)
模拟集成电路(6)----单级放大器(共源共栅级 Cascode Stage) 大信号分析 对M1 V x ≥ V i n − V T H 1 V x V B − V G S 2 V B ≥ V i n − V T H 1 V G S 2 V_{x}\geq V_{in}-V_{TH1}\quad V_{x}V_{B}-V_{GS2}\\V_{B}\geq V_{in}-V_{TH1}V_{GS2} Vx…...
docker以挂载目录启动容器报错问题的解决
拉取镜像: docker pull elasticsearch:7.4.2 docker pull kibana:7.4.2 创建实例: mkdir -p /mydata/elasticsearch/configmkdir -p /mydata/elasticsearch/dataecho "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasti…...
MySQL—函数—流程控制函数(基础)
一、引言 接下来,我们就进入函数的最后一个部分:流程函数。而流程控制函数在我们的日常开发过程是很有用的。 流程控制函数在我们 sql 语句当中,经常用来实现条件的筛选,从而提高语句的一个执行效率。 我们主要介绍以下4个流程控…...
2023年全国职业院校技能大赛(高职组)“云计算应用”赛项赛卷7(私有云)
#需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包及镜像)或有问题的,可私聊博主!!! #需要资源(软件包…...
Jenkins、GitLab部署项目
1、安装JDK 1.1、下载openJdk11 yum -y install fontconfig java-11-openjdk1.2、查看安装的版本号 java -version1.3、配置环境变量 vim /etc/profile在最底部添加即可 export JAVA_HOME/usr/lib/jvm/java-11-openjdk-11.0.23.0.9-2.el7_9.x86_64 export PATH$JAVA_HOME/…...
21.Redis之分布式锁
1.什么是分布式锁 在⼀个分布式的系统中, 也会涉及到多个节点访问同⼀个公共资源的情况. 此时就需要通过 锁 来做互斥控制, 避免出现类似于 "线程安全" 的问题. ⽽ java 的 synchronized 或者 C 的 std::mutex, 这样的锁都是只能在当前进程中⽣效, 在分布式的这种多…...
Mysql基础学习:mysql8 JSON字段查询操作
文章目录 一、查询JSON中某个属性值为XXX的数据量1、方式一2、方式二 二、查询的JSON中的value并去除双引号 一、查询JSON中某个属性值为XXX的数据量 1、方式一 select count(*)from table_namewhere JSON_CONTAINS(json-> $.filed1, "xxx")or JSON_CONTAINS(jso…...
搭建基于Django的博客系统数据库迁移从Sqlite3到MySQL(四)
上一篇:搭建基于Django的博客系统增加广告轮播图(三) 下一篇:基于Django的博客系统之用HayStack连接elasticsearch增加搜索功能(五) Sqlite3数据库迁移到MySQL 数据库 迁移原因 Django 的内置数据库 SQL…...
24年护网工具,今年想参加护网的同学要会用
24年护网工具集 吉祥学安全知识星球🔗http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247483727&idx1&sndb05d8c1115a4539716eddd9fde4e5c9&chksmc0e47813f793f105017fb8551c9b996dc7782987e19efb166ab665f44ca6d900210e6c4c0281&scene21…...
解决TrueNas Scale部署immich后人脸识别失败,后台模型下载异常,immich更换支持中文搜索的CLIP大模型
这个问题搞了我几天终于解决了,搜遍网上基本没有详细针对TrueNas Scale部署immich应用后,CLIP模型镜像下载超时导致人脸识别失败,以及更换支持中文识别的CLIP模型的博客。 分析 现象:TrueNas Scale安装immich官方镜像应用后&…...
面试高频问题----2
一、进程、线程、协程有什么区别? 1.进程:进程是操作系统中独立运行的程序实例,每个进程都有自己的内存空间和系统资源;进程之间相互独立,每个进程有自己的内存地址空间,一个进程无法直接访问另一个进程的…...
Nginx的配置文件-详细使用说明
Nginx的配置文件是Nginx服务器运行的核心,它决定了Nginx如何响应和处理各种请求。以下是对Nginx配置文件(通常名为nginx.conf)的详细解析,按照常见的结构和配置项进行分类: 1. 全局块 user:指定Nginx运行的用户和用户组。例如:user nginx;worker_processes:指定工作进…...
YOLOv5改进 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 轻量级卷积神经网络由于其低计算预算限制了CNNs的深度(卷积层数)和宽度(通道数),…...
23、linux系统文件和日志分析
linux文件系统与日志分析 文件时存储在硬盘上的,硬盘上的最小存储单位是扇区,每个扇区大大小是512字节。 inode:元信息(文件的属性 权限,创建者,创建日期等) block:块,…...
安装VS2017后,离线安装Debugging Tools for Windows(QT5.9.2使用MSVC2017 64bit编译器)
1、背景 安装VS2017后,Windows Software Development Kit - Windows 10.0.17763.132的Debugging Tools for Windows默认不会安装,如下图。这时在QT5.9.2无法使用MSVC2017 64bit编译器。 2、在线安装 如果在线安装参考之前的文章: Qt5.9.2初…...
路由策略实验2
对R7,重发布直连路由 对R2,做双向 对R3同样 先不改优先级 查看,知道所有给R3的路由为151,全部为OSPF。 知道了是错误的,先把3,4之间的线路断掉 接着对R3,让优先级全部回到100(displa…...
Linux网络-守护进程版字典翻译服务器
文章目录 前言一、pid_t setsid(void);二、守护进程翻译字典服务器(守护线程版)效果图 前言 根据上章所讲的后台进程组和session会话,我们知道如果可以将一个进程放入一个独立的session,可以一定程度上守护该进程。 一、pid_t se…...
Python 推导式详解:高效简洁的数据处理技巧
推导式是 Python 提供的一种简洁而强大的语法,用于创建列表、集合和字典。它可以让代码更简洁、更易读,同时提高运行效率。 基本语法 列表推导式 基本语法: [expression for item in iterable if condition]示例: # 生成平方…...
车联网安全入门——ICSim模拟器使用
文章目录 车联网安全入门——ISCim模拟器使用介绍主要特点:使用场景: 安装使用捕获can流量candumpcansnifferwiresharkSavvyCAN主要特点:使用场景: 重放can报文cansendSavvyCAN 总结 车联网安全入门——ISCim模拟器使用 …...
leetcode - 20.有效的括号(LinkedHashMap)
leetcode题目有效的括号,分类是easy,但是博主前前后后提交了几十次才通过,现在记录一下使用Java语言的写法。 题目链接: 20.有效的括号 题目描述: 给定一个只包括 (,),{,},[&…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
