[C#]winform部署官方yolov10目标检测的onnx模型
【框架地址】
https://github.com/THU-MIG/yolov10
【算法介绍】
今天为大家介绍的是 YOLOv10,这是由清华大学研究团队最新提出的,同样遵循 YOLO 系列设计原则,致力于打造实时端到端的高性能目标检测器。
方法
创新
- 双标签分配策略
众所周知,标签分配策略对于目标检测器来说是至关重要的。经过这几年的发展,前前后后也提出了许多的不同的方案,但归根结底还是围绕着正负样本去定义。通常,我们会认为与 GT 框的 IoU 大于给定阈值的便是正样本。
首先,回顾下经典的 YOLO 架构,其通过网格化的方式预定义数千个锚框(anchor),然后基于这些锚框进一步执行回归和分类任务。然而,实际场景中,我们所面临的目标其大小、长宽比、数量、位姿均各有所异,因此很难通过这种方式来提供一个完美的先验信息,尽管可以借助一些方法如 kmeans 聚类来获得一个次优的结果。
于是乎,基于 anchor-free 的目标检测器被提出来了。其标签分配策略被简化成了从网格点到目标框中心或者角点的距离。遗憾的是,无论是 anchor-based 的“框分配”策略还是 anchor-free 的“点分配”策略,其始终会面临一个 many-to-one 的窘境,即对于一个 GT 框来说,会存在多个正样本与之对应。
这便意味着 NMS 成为了一种必不可少的手段,以避免产生冗余检测框。然而,引入 NMS 一方面会增加耗时,同时也会引入一些问题,譬如当 IoU 设置不恰当时会导致一些高置信度的正确目标框被过滤掉(密集场景下)。
当然,针对这个问题,后面也提出了不少解决方案。如最容易想到的就是 two-stage 模型的 one-to-one 即一对一分配策略,我们强制只将一个 GT 框分配给一个正样本,这样就可以避免引入 NMS,可惜效率方面是个极大的劣势。
又比如 One-Net 提出的最小代价分配(Minimum Cost Assignment),即于每个 GT,仅将一个最小代价样本分配为正样本,其它均为负样本,该方法不涉及手动制定的启发式规则或者复杂的二分图匹配。这里代价是指样本与真值之间的分类代价和位置代价的总和。
另一方面,诸如 DETR 系列的检测器,其直接利用 Transformer 的全局建模能力,将目标检测看成是一个集合预测的问题。为了实现端到端的检测,其使用的标签分配策略是二分匹配,使得一个 GT 只能分配到一个正样本。
由于篇(知)幅(识)有(盲)限(区),今天我们就讲到这。回到今天的主角,YOLOv10 的一大创新点便是引入了一种双重标签分配策略,其核心思想便是在训练阶段使用一对多的检测头提供更多的正样本来丰富模型的训练;而在推理阶段则通过梯度截断的方式,切换为一对一的检测头,如此一来便不在需要 NMS 后处理,在保持性能的同时减少了推理开销。
原理其实不难,大家可以看下代码理解下:
#https://github.com/THU-MIG/yolov10/blob/main/ultralytics/nn/modules/head.py
class v10Detect(Detect):max_det = -1def __init__(self, nc=80, ch=()):super().__init__(nc, ch)c3 = max(ch[0], min(self.nc, 100)) # channelsself.cv3 = nn.ModuleList(nn.Sequential(nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)), \nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)), \nn.Conv2d(c3, self.nc, 1)) for i, x in enumerate(ch))self.one2one_cv2 = copy.deepcopy(self.cv2)self.one2one_cv3 = copy.deepcopy(self.cv3)def forward(self, x):one2one = self.forward_feat([xi.detach() for xi in x], self.one2one_cv2, self.one2one_cv3)if not self.export:one2many = super().forward(x)if not self.training:one2one = self.inference(one2one)if not self.export:return {"one2many": one2many, "one2one": one2one}else:assert(self.max_det != -1)boxes, scores, labels = ops.v10postprocess(one2one.permute(0, 2, 1), self.max_det, self.nc)return torch.cat([boxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1)else:return {"one2many": one2many, "one2one": one2one}def bias_init(self):super().bias_init()"""Initialize Detect() biases, WARNING: requires stride availability."""m = self # self.model[-1] # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequencyfor a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # froma[-1].bias.data[:] = 1.0 # boxb[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
- 架构改进
- Backbone & Neck:使用了先进的结构如 CSPNet 作为骨干网络,和 PAN 作为颈部网络,优化了特征提取和多尺度特征融合。
- 大卷积核与分区自注意力:这些技术用于增强模型从大范围上下文中学习的能力,提高检测准确性而不显著增加计算成本。
- 整体效率:引入空间-通道解耦下采样和基于秩引导的模块设计,减少计算冗余,提高整体模型效率。
这块没啥好讲的,大家看一眼框架图便清楚了,懂的都懂。:)
性能
YOLOv10 在各种模型规模上显示了显著的性能和效率改进。关键比较包括:
- YOLOv10-S vs. RT-DETR-R18:YOLOv10-S 的速度提高了 1.8 倍,同时在 COCO 数据集上保持类似的平均精度(AP),参数和 FLOPs 分别减少了 2.8 倍。
- YOLOv10-B vs. YOLOv9-C:YOLOv10-B 的延迟减少了 46%,参数减少了 25%,而性能相当。
扩展性
Model | Test Size | #Params | FLOPs | APval | Latency |
---|---|---|---|---|---|
YOLOv10-N | 640 | 2.3M | 6.7G | 38.5% | 1.84ms |
YOLOv10-S | 640 | 7.2M | 21.6G | 46.3% | 2.49ms |
YOLOv10-M | 640 | 15.4M | 59.1G | 51.1% | 4.74ms |
YOLOv10-B | 640 | 19.1M | 92.0G | 52.5% | 5.74ms |
YOLOv10-L | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
YOLOv10-X | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
YOLOv10 提供了多个模型规模(N、S、M、B、L、X),允许用户根据性能和资源约束选择最适合的模型。这种可扩展性确保了 YOLOv10 能够有效应用于各种实时检测任务,从移动设备上的轻量级应用到需要高精度的复杂任务。
实验
这里重点看下表3,可以看出,采用一对多的检测头性能最好(提供了更丰富的正样本监督信号),但延迟也高了许多(需要 NMS 做后处理);另外方面,一对一的检测头则性能会稍微下降,但延迟却低了不少;最终综合利用两者的优势能达到一个最优的精度-速度折衷。
【效果展示】
【部分实现代码】
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();Yolov10Manager ym = new Yolov10Manager();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}Stopwatch sw = new Stopwatch();sw.Start();var result = ym.Inference(src);sw.Stop();this.Text = "耗时" + sw.Elapsed.TotalSeconds + "秒";var resultMat = ym.DrawImage(result,src);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){ym.LoadWeights(Application.StartupPath+ "\\weights\\yolov10n.onnx", Application.StartupPath + "\\weights\\labels.txt");}private void btn_video_Click(object sender, EventArgs e){var detector = new Yolov10Manager();detector.LoadWeights(Application.StartupPath + "\\weights\\yolov10n.onnx", Application.StartupPath + "\\weights\\labels.txt");VideoCapture capture = new VideoCapture(0);if (!capture.IsOpened()){Console.WriteLine("video not open!");return;}Mat frame = new Mat();var sw = new Stopwatch();int fps = 0;while (true){capture.Read(frame);if (frame.Empty()){Console.WriteLine("data is empty!");break;}sw.Start();var result = detector.Inference(frame);var resultImg = detector.DrawImage(result,frame);sw.Stop();fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);sw.Reset();Cv2.PutText(resultImg, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);//显示结果Cv2.ImShow("Result", resultImg);int key = Cv2.WaitKey(10);if (key == 27)break;}capture.Release();}}
}
【视频演示】
C# winform部署yolov10的onnx模型_哔哩哔哩_bilibiliC#部署yolov10官方onnx模型,首先转成Onnx模型然后即可调用。测试环境:vs2019netframework4.7.2onnxruntime1.16.3opencvsharp==4.8.0, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:我的开源代码居然被盗去卖钱?AI文字搜图搜视频,语义搜索新版整合包发布!,yolov10 tensorrt C++ 推理!全网首发!,C++使用纯opencv部署yolov9的onnx模型,重生紫薇之:容嬷嬷带我了解yolo v10! ----人工智能/计算机视觉/yolo,起猛了,一觉起来看到YOLOv10都发布了!我看看是谁还在研究yolov123456789的,C#YOLO工业滑轨螺丝缺失检测~示例,将yolov5-6.2封装成一个类几行代码完成语义分割任务,毕设项目—基于最新YOLOv10+ByteTrack+PaddleOCR实现交通状态分析 (功能:目标检测、轨迹跟踪、车牌检测、车牌号识别、单目测速及目标计数),labelme json转yolo工具用于目标检测训练数据集使用教程,将yolov8封装成一个类几行代码完成语义分割任务https://www.bilibili.com/video/BV111421173R/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee
【测试环境】
vs2019,netframework4.7.2,onnxruntime1.16.3,opencvsharp4.8.0
【源码下载】
https://download.csdn.net/download/FL1623863129/89366968
【参考文献】
1 https://zhuanlan.zhihu.com/p/699842844
相关文章:

[C#]winform部署官方yolov10目标检测的onnx模型
【框架地址】 https://github.com/THU-MIG/yolov10 【算法介绍】 今天为大家介绍的是 YOLOv10,这是由清华大学研究团队最新提出的,同样遵循 YOLO 系列设计原则,致力于打造实时端到端的高性能目标检测器。 方法 创新 双标签分配策略 众所…...

hmcode硬件编程1
在/home/golemon/hmcode/applications/sample/wifi-iot/app内创建文件夹。 这里创建了d_6_3文件夹 . ├── BUILD.gn ├── d_6_3 │ ├── BUILD.gn │ └── lab.c ├── demolink │ ├── BUILD.gn │ └── helloworld.c ├── iothardware │ ├── B…...

[C++][CMake] set_target_properties called with incorrect number of arguments
1 简介 这篇文章将探讨了在使用CMake构建C项目时,调用set_target_properties函数时参数数量不正确所引发的问题。 2 错误案例 以下为可能发生错误的案例 include_directories (${CMAKE_SOURCE_DIR}/common) find_package(Threads)add_library (libusbmuxd SHARE…...

AdamW算法
AdamW算法是优化算法Adam的一个变体,它在深度学习中广泛应用。AdamW的主要改进在于它正则化方法的改变,即通过权重衰减(weight decay)而不是L2正则化,来控制模型参数的大小,从而提升了训练的稳定性和效果。…...

【c++进阶(二)】STL之string类的模拟实现
💓博主CSDN主页:Am心若依旧💓 ⏩专栏分类c从入门到精通⏪ 🚚代码仓库:青酒余成🚚 🌹关注我🫵带你学习更多c 🔝🔝 1.前言 本章重点 本章主要介绍一些关键接口的模拟实现ÿ…...

PHPStudy(xp 小皮)V8.1.1 通过cmd进入MySQL命令行模式
PHPStudy是一个PHP开发环境集成包,可用在本地电脑或者服务器上,该程序包集成最新的PHP/MySql/Apache/Nginx/Redis/FTP/Composer,一次性安装,无须配置即可使用。MySQL MySQL是一个关系型数据库管理系统,由瑞典 MySQL A…...

php反序列化初步了解
一、定义 序列化(串行化):将变量转换为可保存或传输的字符串的过程(通常是字节流、JSON、XML格式) 反序列比(反串行化):把这个字符串再转化成原始数据结构或对象(原来的…...

Windows系统电脑本地部署AI音乐创作工具并实现无公网IP远程使用
文章目录 前言1. 本地部署2. 使用方法介绍3. 内网穿透工具下载安装4. 配置公网地址5. 配置固定公网地址 前言 本文主要介绍如何在Windows系统电脑上快速本地部署一个文字生成音乐的AI创作工具MusicGPT,并结合cpolar内网穿透工具实现随时随地远程访问使用。 MusicG…...

玩转Linux进度条
准备工作: 一.关于缓冲区 首先,咱们先来一段有意思的代码: #include<stdio.h> #include<unistd.h> int main() {printf("you can see me");sleep(5);} 你可以在你的本地运行一下,这里我告诉大家运行结果…...

真国色码上赞,科技流量双剑合璧,商家获客新纪元开启
在数字化浪潮汹涌的今天,真国色研发团队依托红玉房网络科技公司的雄厚实力,凭借科技领先的核心竞争力,推出了创新性的商家曝光引流工具——码上赞。这款工具借助微信支付与视频号已有功能,为实体商家提供了一种全新的引流获客方式,实现了科技与商业的完美融合。 科技领先,流量黑…...

C++:特殊类设计和四种类型转换
一、特殊类设计 1.1 不能被拷贝的类 拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 C98: 1、将拷贝构造函数与赋值运算符重载只…...

(南京观海微电子)——屏幕材质及优缺点对比
LED/LCD LCD(Liquid Crystal Ddisplay)即“液晶显示器”,由两块偏光镜、两块薄膜晶体管以及彩色滤光片、光源(荧光灯)、显示面板组成的成像元器件。 LED(Light Emitting Diode)即“发光二极管…...

uniapp uni.showModal 出现点击没有反应
uni.showModal 里面有好些参数 点击后不弹出 是因为 出现了 null 或者undifind 字符 特别是content 里面 title: 提示, cancelColor: #000000, editable: true,//是否显示输入框 content: item.text?item.te…...

Vue3-VueRouter
客户端 vs. 服务端路由 服务端路由指的是服务器根据用户访问的 URL 路径返回不同的响应结果。当我们在一个传统的服务端渲染的 web 应用中点击一个链接时,浏览器会从服务端获得全新的 HTML,然后重新加载整个页面。 然而,在单页面应用中&a…...

【图像处理与机器视觉】频率域滤波
知识铺垫 复数 CRjI 可以看作复平面上的点,则该复数的坐标为(R,I) 欧拉公式 e j θ c o s θ j s i n θ e^{j\theta} cos \theta j sin \theta ejθcosθjsinθ 极坐标系中复数可以表示为: C ∣ C ∣ ( c o s…...

python第五次作业
1.请实现一个装饰器,每次调用函数时,将函数名字以及调用此函数的时间点写入文件中 # 导入datetime模块,用于获取当前时间并格式化输出 import datetime# 定义一个装饰器工厂函数log_funcName_time,它接受一个参数time def log_fu…...

JS面向对象编程
目录 实例对象与new命令this关键字对象的原型和继承Object对象的相关方法浅拷贝和深拷贝严格模式实例对象与new命令 构造函数 构造函数的特点有两个: 函数体内部使用了this关键字,代表了所要生成的对象实例。生成对象的时候,必须使用new命令。var Vehicle...

kotlin1.8.10问题导致gson报错TypeToken type argument must not contain a type variable
书接上回,https://blog.csdn.net/jzlhll123/article/details/139302991。 之前我发现gson报错后: gson在2.11.0给我的kotlin项目代码报错了。 IllegalArgumentException: TypeToken type argument must not contain a type variable 上次解释原因是因为&…...

数据库漫谈-国产数据库
国产数据库突然大量出现,下表列出(按首字母排序 ) AISWare AntDB,亚信科技。 AliSQL,阿里云。 Analyticdb,阿里云。 ArkDB,北京极数云舟科技有限公司。 CynosDB,腾讯云 DM&…...

小白跟做江科大32单片机之光敏传感器控制蜂鸣器
代码部分 1.思路 通过光敏电阻,控制蜂鸣器的发声 2.butter.h代码 #ifndef _BUTTER__H #define _BUTTER__H void butter_Init(void); void butter_on(void); void butter_off(void); #endif 3.butter.c代码 #include "stm32f10x.h" void butter…...

使用 Django Channels 构建实时聊天应用(包含用户认证和消息持久化)
文章目录 准备工作创建 Django 项目创建应用程序配置项目编写 Consumer编写路由创建 URL 路由运行应用用户认证消息持久化显示历史消息结论 Django Channels 是 Django 的一个扩展,允许在 Web 应用中添加实时功能,例如 Websockets、HTTP2 和其他协议。本…...

【Elasticsearch】es基础入门-03.RestClient操作文档
RestClient操作文档 示例: 一.初始化JavaRestClient (一)引入es的RestHighLevelClient依赖 <!--elasticsearch--> <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest…...

LeetCode - 二分查找(Binary Search)算法集合(Python)[左右边界|旋转数组|双列表]
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/139419653 二分查找,也称为折半查找,是一种在有序数组中查找特定元素的高效算法。其基本原理是将待搜索的区间分成两半&am…...

android睡眠分期图
一、效果图 做医疗类项目,经常会遇到做各种图表,本文做的睡眠分期图。 二、代码 引入用到的库 api joda-time:joda-time:2.10.1 调用代码 /*** 睡眠* 分期*/private SleepChartAdapter mAdapter;private SleepChartAttrs mAttrs;private List<SleepI…...

2023年信息素养大赛小学组C++智能算法复赛真题
今天给大家分享2023年全国青少年信息素养大赛小学组C智能算法挑战赛复赛里面的一套真题,希望有助于大家了解复赛的难度及备考。 其他真题下载:网盘-真题-信息素养大赛...

独立游戏开发的 6 个步骤
💂 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】🤟 一站式轻松构建小程序、Web网站、移动应用:👉注册地址🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交…...

Stable Diffusion AI绘画:从创意词汇到艺术图画的魔法之旅
文章目录 一、Stable Diffusion的工作原理二、从提示词到模型出图的过程三、Stable Diffusion在艺术创作中的应用《Stable Diffusion AI绘画从提示词到模型出图》内容简介作者简介楚天 目录前言/序言本书特色特别提示 获取方式 在科技的飞速发展中,Stable Diffusion…...

使用C++实现高效的套接字连接池
在现代网络应用中,高效管理网络连接是实现高并发和低延迟的重要因素。下面将详细介绍如何使用C实现一个高效的套接字连接池,以便在需要时快速复用连接,从而提高系统性能和资源利用率。 一、什么是连接池? 连接池是一种管理网络连…...

个人百度百科怎么创建
编辑百度词条是一个相对简单的流程,但需要注意的是,并不是所有的词条都可以编辑,部分锁定的词条是无法编辑的,但可以通过官方平台申请解封。以下百科优化网yajje分享是详细的步骤: 注册百度账号 首先,用户…...

Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:潍柴雷沃智慧农业无人驾驶
潍柴雷沃智慧农业科技股份有限公司,是潍柴集团重要的战略业务单元,旗下收获机械、拖拉机等业务连续多年保持行业领先,是国内少数可以为现代农业提供全程机械化整体解决方案的品牌之一。潍柴集团完成对潍柴雷沃智慧农业战略重组后,…...