当前位置: 首页 > news >正文

Semaphore 源码解读

一、Semaphore

Semaphore 通过设置一个固定数值的信号量,并发时线程通过 acquire() 获取一个信号量,如果能成功获得则可以继续执行,否则将阻塞等待,当某个线程使用 release() 释放一个信号量时,被阻塞的线程则可以被唤醒重新争抢信号量。根据该特征可以有效控制线程的并发数。

Semaphore 是如何控制并发的呢,本篇文章带领大家一起解读下 Semaphore 的源码。

在进行源码分析前,先回顾下 Semaphore 是如何使用的,例如下面一个案例:

public class Test {public static void main(String[] args) {Semaphore semaphore = new Semaphore(3);for (int i = 0; i < 10; i++) {new Thread(() -> {try {semaphore.acquire();System.out.println("线程:" + Thread.currentThread().getName() + " 执行, 当前时间:" + LocalDateTime.now().toString());Thread.sleep(1000);} catch (Exception e) {e.printStackTrace();} finally {semaphore.release();}}, String.valueOf(i)).start();}}
}

运行之后,可以看到下面日志:

在这里插入图片描述
可以看到每次都是 3 个并发。

在本专栏前面讲解 AQS 源码的时候提到 Semaphore 是基于 AQS 实现的,那是如何使用的 AQS 呢?

AQS 中,如果需要使用AQS的特征则需要子类根据使用的场景,重写下面方法:

//查询是否正在独占资源,condition会使用
boolean isHeldExclusively()	
//独占模式,尝试获取资源,成功则返回true,失败则返回false
boolean tryAcquire(int arg)
//独占模式,尝试释放资源,成功则返回true,失败则返回false
boolean tryRelease(int arg)
//共享模式,尝试获取资源,如果返回负数表示失败,否则表示成功。
int tryAcquireShared(int arg)
//共享模式,尝试释放资源,成功则返回true,失败则返回false。
boolean tryReleaseShared(int arg)

由于这里 Semaphore 的特性,所以下面我们只需关注共享模式下的几个方法即可。

说明:由于 Semaphore 的实现依赖于 AQS ,因此需要对 AQS 有一定的了解,不了解的小伙伴可以看下这篇对 AQS 源码分析的文章,和当前文章在同一专栏:

https://blog.csdn.net/qq_43692950/article/details/129367736

二、Semaphore 中 Sync、FairSync、NonfairSync

2.1 Sync、FairSync、NonfairSync

在声明 Semaphore 时,有两种方式,一种是使用只有一个 permits 参数的构造函数,一种则需要多增加一个 fair 参数:

new Semaphore(3);
new Semaphore(3, true);

当使用只有一个 permits 参数的构造函数声明时,则是创建了一个 NonfairSync 对象:

在这里插入图片描述

通过需要多增加一个 fair 参数的构造函数时,则可以根据传入的 fair 选择创建一个 FairSync 对象:

在这里插入图片描述

这里也不难理解 NonfairSyncFairSync 其实可以理解为 Semaphore 中的非公平锁和公平锁两种类型。

点到这两个类中,可以看到都继承自 Sync 类:

在这里插入图片描述
在这里插入图片描述

Sync 类,则继承自 AQS

在这里插入图片描述
到这里,我们就可以寻找几个关键的方法,在AQS中共享模式下,两大关键的方法是交由子类进行实现的,分别是 tryAcquireShared 尝试获取资源,和 tryReleaseShared 尝试释放资源。

首先来看 tryAcquireShared 尝试获取资源:

通过 Sync 类的实现源码发现并没有重写 tryAcquireShared方法,那该方法肯定在下面的FairSyncNonfairSync 子类中,分别看下源码确实存在重写的方法:

在这里插入图片描述
在这里插入图片描述

2.2 NonfairSync 下的 tryAcquireShared

这里先分析下 NonfairSynctryAcquireShared 实现逻辑,可以看到又调用了 nonfairTryAcquireShared 就是 Sync 类中的 nonfairTryAcquireShared ,从命名上可以分析出就是非公平锁的尝试获取资源的操作,直观就是非公平锁下获取锁的操作:

在这里插入图片描述

进入到 Sync 类中的 nonfairTryAcquireShared 方法中,可以明显看到一个自旋的操作,在循环中首先获取到 AQS 中的共享资源 state ,并对其进行 - acquires (默认为 1 ,后面会进行说明)操作,其实就是 -1 操作,如果减去的值小于 0 或者修改 state 成功,就返回当前减去的值,否则就自旋的方式再次重试:

在这里插入图片描述

上一步的操作主要做了什么目的呢,其实从 Sync 的构造方法就可以看出,创建 Semaphore 传递的 permits 参数被赋值给了 AQS 中的 state ,那此时 state 就记录的当前剩余信号量的大小,获取资源就要进行 -1 标识消耗了一个,最后将减去的值返回出去表示剩余的资源,如果信号量小于 0 了,则表示获取资源失败,直观就是获取锁失败。因为在 AQS 中对 tryAcquireShared 方法的判断是小于 0 时,进行线程的入列和挂起等待。

在这里插入图片描述
在这里插入图片描述

2.3 FairSync下的 tryAcquireShared

FairSync 类下的 tryAcquireShared 方法中,和前面 NonfairSync 类似,但不同的是,会首先进行 hasQueuedPredecessors 方法的判断:

在这里插入图片描述

下面进到 hasQueuedPredecessors 的方法中,可以看到是由 AQS 提供的方法,主要就是判断当前节点线程的前面是否还有等待的线程,因为 FairSync 实现的是公平锁的原则,如果当前线程前面还有等待线程,则获取锁资源也轮不到自个,让前面的老大先来,所以直接返回 -1 表示获取资源失败:

在这里插入图片描述

2.4 tryReleaseShared

到这里已经了解到了 tryAcquireShared尝试获取资源的逻辑,上面提到了两个重要方法,还有一个 tryReleaseShared 没有分析,还是首先看 Sync 类中是否有重写该方法:

通过源码可以看到,在 Sync 类中就已经对 tryReleaseShared 进行了重写,而 NonfairSyncFairSync 中都没有重写该方法,那释放资源就是走的 Sync 类下的 tryReleaseShared 方法:

在这里插入图片描述
在该方法同样使用了自旋,首先获取到 AQS 中的共享资源 state ,然后进行 + releases (默认情况下为 1 ,后面会说明),其实就是进行 +1 操作,并使用新的值修改 state ,如果修改失败的话则在自旋中继续修改,直到成功后返回 true ,表示释放资源成功。

看到这里就会发现获取资源和释放资源,无非就是对 AQS 中的共享资源 state 进行操作。理解了这两大核心的方法后,下面就可以看如何运用在 Semaphore 中的了。

三、semaphore.acquire()

通过 semaphore.acquire() 可以获取一个信号量,如果获取不到则阻塞等待,那semaphore.acquire() 主要做了什么呢?

下面点到该方法中,可以看到又调用了 sync.acquireSharedInterruptibly 方法,其实就是 AQS 中的 acquireSharedInterruptibly 方法,注意这里传递的参数为 1 ,对应上面括号中的说明:

在这里插入图片描述

AQSacquireSharedInterruptibly 方法中,首先会使用子类的 tryAcquireShared 方法获取资源,如果资源数小于 0 ,则认为获取失败,下面使用 doAcquireSharedInterruptibly 进行加入队列并挂起阻塞:

在这里插入图片描述

关于AQS如何加入队列和挂起,可以参考文章开始的链接中对 AQS 源码的解读。

四、semaphore.release()

上面在获取不到可用的资源时,则会被 AQS 挂起,因此这里还需要进行释放资源。

下面点到 semaphore.release() 方法中,可以看到又调用了 sync.releaseShared ,其实就是 AQS 中的 releaseShared 方法,注意这里参数默认为 1 ,对应上面括号中的说明:

在这里插入图片描述
AQSreleaseShared 方法中,会首先调用子类的 tryReleaseShared 释放资源,释放成功后,会使用 doReleaseShared 进行挂起线程的唤醒:

在这里插入图片描述

关于releaseShared方法的源码解读可以参考文章开始的链接中对 AQS 源码的解读。

三、总结

通过阅读 Semaphore的源码可以发现,大量依赖于 AQS 中提供的方法,如果有阅读过本专栏对 ReentrantLock 锁源码的分析,可以发现相似度极高,都是使用 AQS 所提供的的特征实现某些场景的应用。

相关文章:

Semaphore 源码解读

一、Semaphore Semaphore 通过设置一个固定数值的信号量&#xff0c;并发时线程通过 acquire() 获取一个信号量&#xff0c;如果能成功获得则可以继续执行&#xff0c;否则将阻塞等待&#xff0c;当某个线程使用 release() 释放一个信号量时&#xff0c;被阻塞的线程则可以被唤…...

RZ/G2L工业核心板U盘读写速率测试

1. 测试对象HD-G2L-IOT基于HD-G2L-CORE工业级核心板设计&#xff0c;双路千兆网口、双路CAN-bus、2路RS-232、2路RS-485、DSI、LCD、4G/5G、WiFi、CSI摄像头接口等&#xff0c;接口丰富&#xff0c;适用于工业现场应用需求&#xff0c;亦方便用户评估核心板及CPU的性能。HD-G2L…...

《SQL与数据库基础》18. MySQL管理

SQL - MySQL管理MySQL管理系统数据库常用工具mysqlmysqladminmysqlbinlogmysqlshowmysqldumpmysqlimportsource本文以 MySQL 为例 MySQL管理 系统数据库 Mysql数据库安装完成后&#xff0c;自带了以下四个数据库&#xff0c;具体作用如下&#xff1a; 数据库含义mysql存储My…...

达梦关系型数据库

达梦关系型数据库一、DM8 安装1. 安装包下载2. Docker 安装3. Linux 安装4. Windows 安装二、DM 管理工具三、命令行交互工具 DIsql四、DM8 SQL使用1. 创建模式2. 创建表3. 修改表4. 读写数据5. 查看库下所有的表名6. 查看表字段信息GitHub: link. 欢迎star国产自主研发的大型…...

Postgresql | 执行计划

SQL优化主要从三个角度进行&#xff1a; &#xff08;1&#xff09;扫描方式&#xff1b; &#xff08;2&#xff09;连接方式&#xff1b; &#xff08;3&#xff09;连接顺序。 如果解决好这三方面的问题&#xff0c;那么这条SQL的执行效率就基本上是靠谱的。看懂SQL的执行计…...

Vue3之父子组件通过事件通信

前言 组件间传值的章节我们知道父组件给子组件传值的时候&#xff0c;使用v-bind的方式定义一个属性传值&#xff0c;子组件根据这个属性名去接收父组件的值&#xff0c;但是假如子组件想给父组件一些反馈呢&#xff1f;就不能使用这种方式来&#xff0c;而是使用事件的方式&a…...

在云服务器安装tomcat和mysql

将 linux 系统安装包解压到指定目录进入 bin 目录执行./startup.sh 命令启动服务器执行./shutdown.sh 关闭服务器在浏览器中访问虚拟机中的 tomcat ip端口具体操作入下解压tomcat压缩包解压&#xff0c;输入tom按table键自动补全tar -zxvf 启动tomcat进入bin目录在linux启动to…...

IO多路复用(select、poll、epoll网络编程)

目录一、高级IO相关1.1 同步通信和异步通信1.2 阻塞与非阻塞1.3 fcntl 函数二、五种IO模型2.1 阻塞式IO模型2.2 非阻塞式IO模型2.3 多路复用IO模型2.4 信号驱动式IO模型2.5 异步IO模型三、认识IO多路复用四、select4.1 认识select函数4.2 select函数原型4.3 select网络编程4.4 …...

Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建

搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联&#xff0c;都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话&#xff0c;所有配置文件添加的内容后面的注释记得删除&#xff0c;可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命…...

C++网络编程(一)本地socket通信

C网络编程(一) socket通信 前言 本次内容简单描述C网络通信中&#xff0c;采用socket连接客户端与服务器端的方法&#xff0c;以及过程中所涉及的函数概要与部分函数使用细节。记录本人C网络学习的过程。 网络通信的Socket socket,即“插座”,在网络中译作中文“套接字”,应…...

【Docker】Linux下Docker安装使用与Docker-compose的安装

【Docker】的安装与启动 sudo yum install -y yum-utils device-mapper-persistent-data lvm2 sudo yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo sudo yum install docker-cesudo systemctl enable dockersudo systemct…...

构造函数与普通函数,显式原型与隐式原型,原型与原型链

原型与原型链1 学前先了解一些概念1.1 构造函数和普通函数的区别1.1.1 调用方式1.1.2 函数中this的指向不同1.1.3 写法不同1.2 问题明确2 原型与原型链2.1 原型2.2 显式原型与隐式原型2.3 原型链3 原型链环形结构1 学前先了解一些概念 1.1 构造函数和普通函数的区别 构造函数…...

跨过社科院与杜兰大学金融管理硕士项目入学门槛,在金融世界里追逐成为更好的自己

没有人不想自己变得更优秀&#xff0c;在职的我们也是一样。当我们摸爬滚打在职场闯出一条路时&#xff0c;庆幸的是我们没有沉浸在当下&#xff0c;而是继续攻读硕士学位&#xff0c;在社科院与杜兰大学金融管理硕士项目汲取能量&#xff0c;在金融世界里追逐成为更好的自己。…...

macOS 13.3 Beta 3 (22E5236f)With OpenCore 0.9.1开发版 and winPE双引导分区原版镜像

原文地址&#xff1a;http://www.imacosx.cn/112494.html&#xff08;转载请注明出处&#xff09;镜像特点完全由黑果魏叔官方制作&#xff0c;针对各种机型进行默认配置&#xff0c;让黑苹果安装不再困难。系统镜像设置为双引导分区&#xff0c;全面去除clover引导分区&#x…...

InceptionTime 复现

下载数据集&#xff1a; https://www.cs.ucr.edu/~eamonn/time_series_data/ 挂梯子&#xff0c;开全局模式即可 配置环境 虚拟环境基于python3.9&#xff0c; tensorflow下载&#xff1a;pip install tensorflow&#xff0c;不需要tensorflow-gpu&#xff08;高版本python&…...

谷粒学院开发(二):教师管理模块

前后端分离开发 前端 html, css, js, jq 主要作用&#xff1a;数据显示 ajax后端 controller service mapper 主要作用&#xff1a;返回数据或操作数据 接口 讲师管理模块&#xff08;后端&#xff09; 准备工作 创建数据库&#xff0c;创建讲师数据库表 CREATE TABLE edu…...

2021牛客OI赛前集训营-提高组(第三场) T4扑克

2021牛客OI赛前集训营-提高组&#xff08;第三场&#xff09; 题目大意 小A和小B在玩扑克牌游戏&#xff0c;规则如下&#xff1a; 从一副52张牌&#xff08;没有大小王&#xff09;的扑克牌中随机发3张到每个玩家手上&#xff0c;每个玩家可以任意想象另外两张牌&#xff0…...

【OJ比赛日历】快周末了,不来一场比赛吗? #03.11-03.17 #12场

CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…&#xff09;比赛。本账号同时会推送最新的比赛消息&#xff0c;欢迎关注&#xff01;更多比赛信息见 CompHub主页 或 点击文末阅读原文以下信息仅供参考&#xff0c;以比赛官网为准目录2023-03-11&…...

C++-说一说异常机制

C异常机制是一种处理程序错误的高级方法。当程序出现错误时&#xff0c;可以通过抛出异常来通知调用者进行处理&#xff0c;或者在异常对象被捕获之后终止程序执行。 异常处理语法 在C中&#xff0c;可以使用 throw 抛出异常&#xff0c; try-catch 处理异常&#xff0c;try块中…...

k8s CSI插件浅析

Kubernetes CSI (Container Storage Interface)插件是一种可插拔的存储插件&#xff0c;可以将外部存储系统的功能集成到Kubernetes集群中。它允许Kubernetes管理员动态地将外部存储系统映射到容器中&#xff0c;以满足应用程序对持久化存储的需求。 CSI插件基于一组规范定义的…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...