O2O : Finetuning Offline World Models in the Real World
CoRL 2023 Oral
paper
code
Intro
算法基于TD-MPC,利用离线数据训练世界模型,然后在线融合基于集成Q的不确定性估计实现Planning。得到的在线数据将联合离线数据共同训练目标策略。
Method

TD-MPC
TD-MPC由五部分构成:
- 状态特征提取 z = h θ ( s ) z = h_\theta(s) z=hθ(s)
- 隐动力学模型 z ′ ‘ = d θ ( z , a ) z'`=d_\theta(z,a) z′‘=dθ(z,a)
- 奖励模型 r ^ = R θ ( z , a ) \hat{r}=R_\theta(z,a) r^=Rθ(z,a)
- planning policy a ^ = π θ ( z ) \hat{a}=\pi_\theta(z) a^=πθ(z)
- 终止状态下的 q ^ = Q θ ( z , a ) \hat{q}=Q_\theta(z,a) q^=Qθ(z,a)
通过联合训练进行优化,损失函数为:
L ( θ ) = E ( s , a , r , s ′ ) 0 : h ∼ B ⌊ ∑ t = 0 h ( ∥ z t ′ − s g ( h ϕ ( s t ′ ) ) ∥ 2 2 ⏟ Latent dynamics + ∥ r ^ t − r t ∥ 2 2 ⏟ Reward + ∥ q ^ t − q t ∥ 2 2 ⏟ Value − Q θ ( z t , a ^ t ) ⏟ Action ) ⌋ ( 1 ) \mathcal{L}(\theta)=\mathbb{E}_{(\mathbf{s},\mathbf{a},r,\mathbf{s}^{\prime})_{0:h}\sim\mathcal{B}}\left\lfloor\sum_{t=0}^{h}\left(\underbrace{\|\mathbf{z}_{t}^{\prime}-\mathrm{sg}(h_{\phi}(\mathbf{s}_{t}^{\prime}))\|_{2}^{2}}_{\text{Latent dynamics}}+\underbrace{\|\hat{r}_{t}-r_{t}\|_{2}^{2}}_{\text{Reward}}+\underbrace{\|\hat{q}_{t}-q_{t}\|_{2}^{2}}_{\text{Value}}-\underbrace{Q_{\theta}(\mathbf{z}_{t},\hat{\mathbf{a}}_{t})}_{\text{Action}}\right)\right\rfloor(1) L(θ)=E(s,a,r,s′)0:h∼B t=0∑h Latent dynamics ∥zt′−sg(hϕ(st′))∥22+Reward ∥r^t−rt∥22+Value ∥q^t−qt∥22−Action Qθ(zt,a^t) (1)
在Offline 设定下,分布偏移将导致Q估计以及隐模型以及价值函数的错误估计。启发于IQL,通过只对in-sample的动作尽心TD-backups来估计,缓解过估计问题。因此对模型价值函数利用离线数据进行训练时,此时Q函数采用IQL中的期望回归方法优化
L V ( θ ) = ∣ τ − 1 { Q ϕ ( z t , a t ) − V θ ( z t ) < 0 } ∣ ( Q ϕ ( z t , a t ) − V θ ( z t ) ) 2 , \mathcal{L}_{V}(\theta)=|\tau-1_{\{Q_{\phi}(\mathbf{z}_{t},\mathbf{a}_{t})-V_{\theta}(\mathbf{z}_{t})<0\}}|(Q_{\phi}(\mathbf{z}_{t},\mathbf{a}_{t})-V_{\theta}(\mathbf{z}_{t}))^{2}, LV(θ)=∣τ−1{Qϕ(zt,at)−Vθ(zt)<0}∣(Qϕ(zt,at)−Vθ(zt))2,
同时对planning policy采用AWR的更新,即 exp ( β ( Q ϕ ( z t , a t ) − V θ ( z t ^ ) ) ) log π θ ( a t ∣ z t ) \exp(\beta(Q_\phi(\mathbf{z}_t,\mathbf{a}_t)-V_\theta(\hat{\mathbf{z}_t})))\log\pi_\theta(\mathbf{a}_t|\mathbf{z}_t) exp(β(Qϕ(zt,at)−Vθ(zt^)))logπθ(at∣zt)
Uncertainty Estimation as Test-Time Behavior Regularizatio
离线训练的模型依旧存在OOD数据过估计,需要在线微调。文章提出基于不确定性估计的planning实现在线交互过程中的动作选择。planning一定程度缓解基于约束的离线算法导致的在现阶段探索能力不足。进而导致算法样本效率低的问题。
首先构建集成Q函数模型,计算基于标准差的不确信度,作为惩罚项对奖励进行调整,实现保守的在线planning。
R ^ = γ h ( Q θ ( z h , a h ) − λ u h ) + ∑ t = 0 h − 1 γ t ( R θ ( z t , a t ) − λ u t ) , u t = s t d ( { Q θ ( i ) ( z t , a t ) } i = 1 N ) \hat{\mathcal{R}}=\gamma^{h}\left(Q_{\theta}(\mathbf{z}_{h},\mathbf{a}_{h})-\lambda u_{h}\right)+\sum_{t=0}^{h-1}\gamma^{t}\left(R_{\theta}(\mathbf{z}_{t},\mathbf{a}_{t})-\lambda u_{t}\right),\quad u_{t}=\mathrm{std}\left(\{Q_{\theta}^{(i)}(\mathbf{z}_{t},\mathbf{a}_{t})\}_{i=1}^{N}\right) R^=γh(Qθ(zh,ah)−λuh)+t=0∑h−1γt(Rθ(zt,at)−λut),ut=std({Qθ(i)(zt,at)}i=1N)
除此外,还维护两个buffer分别存储离线数据于在线数据,通过balance sampling数据训练模型、策略以及价值函数。
结果


相关文章:
O2O : Finetuning Offline World Models in the Real World
CoRL 2023 Oral paper code Intro 算法基于TD-MPC,利用离线数据训练世界模型,然后在线融合基于集成Q的不确定性估计实现Planning。得到的在线数据将联合离线数据共同训练目标策略。 Method TD-MPC TD-MPC由五部分构成: 状态特征提取 z h θ ( s ) …...
嵌入式学习(Day:31 网络编程2:TCP)
client, server browser b/s http p2p peer TCP的特征:1.有链接;2.可靠传输;3.流式套接字 1、模式 C/S 模式 》服务器/客户端模型(服务端1个,客户端很多个) server:socket()-->bind()---…...
正则表达式 0.1v
正则表达式 扩展 --> :% s/\///g //文件里面所有的 / 去掉 * 通配符 \ //转义,让字符变成原本的意思 ^ //行首 $ //行尾 [0-9] //数字 [a-z] //小写字母 [A-Z] //大写字母 把文件的小写字母替换为大写字母? 固定写法 :% s/[a-…...
免费的仓库出入库管理软件有哪些?
中小企业因为预算有限,所以希望能在出入库管理软件方面能够减少成本。 但我们必须清醒地认识到,所谓的“永久免费”往往只是一个幌子。这些软件要么是新上市的、功能尚未完善的产品,试图通过免费吸引用户试用;要么在数据安全和客…...
python 办公自动化-生成ppt文本和图
最终样式 代码实现 # 可编辑折线写入文字 成功 # 问题: 设置字体类型和加粗和字体为微软雅黑,是只改了字母和数字的字体,中文没变化 pip install pptx_ea_font 这个库可以解决这个问题 import pandas as pd import pptx_ea_font import mat…...
「动态规划」买卖股票的最佳时机
力扣原题链接,点击跳转。 给定一个整数数组prices,prices[i]表示股票在第i天的价格。你最多完成2笔交易。你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。设计一个算法计算最大利润。 我们用动态规划的思想来解决…...
Java 并发编程面试二
目录 一、并发编程三要素? 二、实现可见性的方法有哪些? 三、多线程的价值? 四、创建线程的有哪些方式? 五、创建线程的三种方式的对比? 六、Java 线程具有五中基本状态 七、什么是线程池?有哪几种创建方式 八、四种线程池的创建 九、线程池的优点? 十、常用的…...
成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南
成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南 在Python编程中,遇到ModuleNotFoundError: No Module Named utils这样的错误通常意味着Python解释器无法找到名为utils的模块。这可能是由于多种原因造成的,比如模块确实不存…...
Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:公路智能巡检解决方案
项目背景 中国公路网络庞大,总里程超过535万公里,高速公路里程位居世界前列。面对基础设施存量的不断增长,公路养护管理已迈入“建管养并重”的新时代。随着养护支出的逐年攀升,如何提升养护效率、降低管理成本,成为亟…...
【Maxcompute】geohash转经纬度,经纬度转geohash,计算geohash九宫格
1.梳理、总结经纬度处理在Maxcompute平台上的实战应用,如geohash转经纬度,经纬度转geohash,计算geohash九宫格等。 2.欢迎批评指正,跪谢一键三连! 文章目录 1.部署代码1.部署代码 部署至Maxcompute(ODPS)-DataWorks平台,去掉代码注释即可#coding:utf-8 # from odps.udf…...
【R语言基础】如何更新R版本
文章目录 概要流程细节具体步骤 概要 提示:由于软件包的更新,所以需要更新R至新版本 流程细节 查看当前R版本 R.version下载更新包:installr install.packages("installr")library(installr)跟着向导一步步执行安装 具体步骤 …...
Python知识点10---函数
提前说一点:如果你是专注于Python开发,那么本系列知识点只是带你入个门再详细的开发点就要去看其他资料了,而如果你和作者一样只是操作其他技术的Python API那就足够了。 Python的函数和Scala的函数很像,语法很简单,注…...
有哪些挣钱软件一天能赚几十元?盘点十个能长期做下去的挣钱软件
在这个信息爆炸的时代,每个人都在寻找快速赚钱的秘诀。很多人做兼职副业的目标并不是获得很大的成功,大部分人一天能赚几十就心满意足了。 今天,我要带你一探究竟,揭秘那些能让你日赚几十元的挣钱软件。准备好了吗?让我…...
CentOS7安装MySQL教程
第一章 检查是否安装了Mysql 1.1 yum检查 yum list installed | grep mysql 1.2 安装则直接删除 yum remove xxx 1.3 rpm检查 rpm -qa | grep -i mysql # 有则直接删除 rpm -e --nodeps xxx 第二章 正式安装MySQL 2.1 yum安装,下载mysql wget --no-check-ce…...
师彼长技以助己(3)逻辑思维
师彼长技以助己(3)逻辑思维 前言 上一篇文章进行了工程思维和产品思维的测试,并介绍了几个比较重要的产品思维模型。接下来本篇介绍工程思维。(注意产品思维并不代表产品经理思维,工程思维也并不代表工程师思维&…...
LeetCode:反转链表I
文章收录于LeetCode专栏 LeetCode地址 反转链表I 题目 给你单链表的头节点head,请你反转链表,并返回反转后的链表。 示例 1: #mermaid-svg-IYmD16EKuu3CZWwV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size…...
oracle linux7安装oracle11g0204
1、平时需要修改 /etc/redhat-release文件为Red Hat Enterprise Linux 7,这次不需要了。 2、关闭selinx nano /etc/selinux/config 改为disabled 3、nano /etc/hosts 修改解析 在oracle服务器中增加 /etc/hosts中一个对应 192.168.1.10 CLOUD-MC-SQL1 4、修改系统文件 /…...
STM32--ADC
一、简介 *ADC(Analog-Digital Converter)模拟-数字转换器 *ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 *12位逐次逼近型ADC,1us转换时间 *输入电压范围:0~3.3V&…...
【TB作品】msp430f149单片机,读取ds18b20温度,显示到数码管,串口发送温度到电脑
功能 msp430f149单片机 读取ds18b20温度,显示到数码管,串口发送温度到电脑 部分程序 /************************************************* * 程序功能:用DS18B20测量室温并在数码管上显示。 * --------------------------------------…...
vue组合式和选项式
Vue中的组合式(Composition API)和选项式(Options API)是两种不同的编写组件逻辑的方法。 组合式API(Composition API): 使用函数来定义组件逻辑,可以更灵活地重用和组合逻辑。使用setup函数作为组件的入口点,在这里可以访问pro…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
