「动态规划」买卖股票的最佳时机
力扣原题链接,点击跳转。
给定一个整数数组prices,prices[i]表示股票在第i天的价格。你最多完成2笔交易。你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。设计一个算法计算最大利润。
我们用动态规划的思想来解决这个问题。首先确定状态表示。我们用f和g分别表示「买入」和「卖出」状态(处于「买入」状态时,手里有股票;处于「卖出」状态时,手里没有股票)。用i表示第i天结束时的状态。用j表示当前完成了j笔交易。也就是说,用f[i][j]表示在第i天结束时,处于「买入」状态下,完成了j笔交易,此时的最大利润;用g[i][j]表示在第i天结束时,处于「卖出」状态下,完成了j笔交易,此时的最大利润。
接下来推导状态转移方程。首先考虑f[i][j],如果第i-1天结束时处于「买入」状态,那么需要在第i天「持有股票」,就能在第i天结束时依然处于「买入」状态,由于「持有股票」并不会改变完成的交易次数,也不会改变利润,所以此时f[i][j]=f[i-1][j];如果第i-1天结束时处于「卖出」状态,那么需要在第i天「买入股票」,就能在第i天结束时处于「买入」状态,由于「买入股票」并不会改变完成的交易次数,但是会使利润减少第i天的股票价格,所以此时f[i][j]=g[i-1][j]-prices[i]。由于要求的是最大利润,所以f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i])。
接着考虑g[i][j],如果第i-1天结束时处于「买入」状态,那么需要在第i天「卖出股票」,就能在第i天结束时处于「卖出」状态,由于「卖出股票」后就完成了一次完整的交易,所以在第i-1天结束时的交易次数会比第i天结束时的交易次数少1,即第i-1天结束时的交易次数是j-1,同时「卖出股票」会使利润增多第i天的股票价格,所以此时g[i][j]=f[i-1][j-1]+prices[i];如果第i-1天结束时处于「卖出」状态,那么需要在第i天「观望」,就会在第i天结束时依然处于「卖出状态」,而「观望」并不会改变交易次数和利润,所以此时g[i][j]=g[i-1][j]。由于要求的是最大利润,所以g[i][j]=max(f[i-1][j-1]+prices[i],g[i-1][j])。
接下来考虑初始化的问题。再次观察状态转移方程:f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i]),g[i][j]=max(f[i-1][j-1]+prices[i],g[i-1][j])。由于f[i][j]和g[i][j]都会依赖于i-1,所以初始化2个表的最上面一行。注意到j的取值范围是[0,2],故需要初始化的坐标有:(0,0)、(0,1)和(0,2)。不过,(0,1)和(0,2)说明在第0天结束时已经至少完成了1笔交易,也就是说,会在第0天「买入后立刻卖出股票」,这种操作是没有意义的,因为浪费了交易次数。所以,为了让(0,1)和(0,2)的值不影响取max的结果,应该把这两个位置初始化为-∞,即-0x3f3f3f3f,注意不是INT_MIN,防止计算g[i-1][j]-prices[i]时溢出。所以,现在只需要考虑f[0][0]和g[0][0]。其中f[0][0]表示在第0天结束时处于「买入」状态,只需要在第0天「买入股票」,即f[0][0]=-prices[0];g[0][0]表示在第0天结束时处于「卖出」状态,只需要在第0天「观望」,即g[0][0]=0。
还有另一个地方有可能越界。注意到g[i][j]=max(f[i-1][j-1]+prices[i],g[i-1][j]),会依赖于j-1,所以理论上还需要初始化g表的最左边一列。但是这么做的话,会让f表和g表对应不上,导致细节问题更难处理。所以我们采取另一种方法。j代表的是交易次数,之所以j-1有可能越界,是因为这样算出来的交易次数是-1。既然不存在交易次数是-1的情况,我们只需要判断一下,如果j-1≥0,才计算g[i][j]=max(f[i-1][j-1]+prices[i],g[i-1][j]),否则g[i][j]=g[i-1][j]即可。这样,就不存在越界的风险了。
填表时应从上往下填每一行,每一行从左往右填,且f表和g表同时填。最终应返回g表的最后一行的最大值,这是因为要想获取最大利润,就一定要在最后一天结束时处于「卖出」状态,且不确定此时的交易次数。我们来分析一下dp表的规模。由于没有加上虚拟节点,所以行数应与实际天数相同,即prices的元素个数n;由于j的所有可能取值是0、1和2,所以有3列。综上,f表和g表的大小均为n×3。
class Solution {
public:int maxProfit(vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 创建dp表vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]);}}// 求g表最后一行的最大值return *max_element(g[n-1].begin(), g[n-1].end());}
};
这道题还有个终极版本:力扣原题链接,点击跳转。
把限定的交易次数从2次改为k次,其余条件不变,求最大利润。
分析思路完全一样。状态表示和状态转移方程不变。初始化方式不变,依然是最上面一行除了f[0][0]=-prices[0]和g[0][0]=0之外都初始化为-∞。填表顺序不变。最后依然是返回g表最后一行的最大值。只有表的规模从n×3变为了n×(k+1)。
代码的话,只需要把上道题的代码的3修改为k+1即可。事实上,上道题就是本题中k=2时的特殊情况。除此之外,还有一个点值得优化,最多的交易次数一定不会超过总天数的一半,比如总天数是10天,那么最多交易5次;总天数是9天,那么最多交易4次。
class Solution {
public:int maxProfit(int k, vector<int>& prices) {const int INF = 0x3f3f3f3f;int n = prices.size();// 交易次数不会超过总天数的一半k = min(k, n/2);// 创建dp表vector<vector<int>> f(n, vector<int>(k+1, -INF));auto g = f;// 初始化f[0][0] = -prices[0];g[0][0] = 0;// 填表for (int i = 1; i < n; i++){for (int j = 0; j < k+1; j++){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = g[i-1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i-1][j-1] + prices[i]);}}// 求g表最后一行的最大值return *max_element(g[n-1].begin(), g[n-1].end());}
};
相关文章:

「动态规划」买卖股票的最佳时机
力扣原题链接,点击跳转。 给定一个整数数组prices,prices[i]表示股票在第i天的价格。你最多完成2笔交易。你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。设计一个算法计算最大利润。 我们用动态规划的思想来解决…...

Java 并发编程面试二
目录 一、并发编程三要素? 二、实现可见性的方法有哪些? 三、多线程的价值? 四、创建线程的有哪些方式? 五、创建线程的三种方式的对比? 六、Java 线程具有五中基本状态 七、什么是线程池?有哪几种创建方式 八、四种线程池的创建 九、线程池的优点? 十、常用的…...

成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南
成功解决“ModuleNotFoundError: No Module Named ‘utils’”错误的全面指南 在Python编程中,遇到ModuleNotFoundError: No Module Named utils这样的错误通常意味着Python解释器无法找到名为utils的模块。这可能是由于多种原因造成的,比如模块确实不存…...

Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:公路智能巡检解决方案
项目背景 中国公路网络庞大,总里程超过535万公里,高速公路里程位居世界前列。面对基础设施存量的不断增长,公路养护管理已迈入“建管养并重”的新时代。随着养护支出的逐年攀升,如何提升养护效率、降低管理成本,成为亟…...

【Maxcompute】geohash转经纬度,经纬度转geohash,计算geohash九宫格
1.梳理、总结经纬度处理在Maxcompute平台上的实战应用,如geohash转经纬度,经纬度转geohash,计算geohash九宫格等。 2.欢迎批评指正,跪谢一键三连! 文章目录 1.部署代码1.部署代码 部署至Maxcompute(ODPS)-DataWorks平台,去掉代码注释即可#coding:utf-8 # from odps.udf…...

【R语言基础】如何更新R版本
文章目录 概要流程细节具体步骤 概要 提示:由于软件包的更新,所以需要更新R至新版本 流程细节 查看当前R版本 R.version下载更新包:installr install.packages("installr")library(installr)跟着向导一步步执行安装 具体步骤 …...

Python知识点10---函数
提前说一点:如果你是专注于Python开发,那么本系列知识点只是带你入个门再详细的开发点就要去看其他资料了,而如果你和作者一样只是操作其他技术的Python API那就足够了。 Python的函数和Scala的函数很像,语法很简单,注…...

有哪些挣钱软件一天能赚几十元?盘点十个能长期做下去的挣钱软件
在这个信息爆炸的时代,每个人都在寻找快速赚钱的秘诀。很多人做兼职副业的目标并不是获得很大的成功,大部分人一天能赚几十就心满意足了。 今天,我要带你一探究竟,揭秘那些能让你日赚几十元的挣钱软件。准备好了吗?让我…...

CentOS7安装MySQL教程
第一章 检查是否安装了Mysql 1.1 yum检查 yum list installed | grep mysql 1.2 安装则直接删除 yum remove xxx 1.3 rpm检查 rpm -qa | grep -i mysql # 有则直接删除 rpm -e --nodeps xxx 第二章 正式安装MySQL 2.1 yum安装,下载mysql wget --no-check-ce…...

师彼长技以助己(3)逻辑思维
师彼长技以助己(3)逻辑思维 前言 上一篇文章进行了工程思维和产品思维的测试,并介绍了几个比较重要的产品思维模型。接下来本篇介绍工程思维。(注意产品思维并不代表产品经理思维,工程思维也并不代表工程师思维&…...

LeetCode:反转链表I
文章收录于LeetCode专栏 LeetCode地址 反转链表I 题目 给你单链表的头节点head,请你反转链表,并返回反转后的链表。 示例 1: #mermaid-svg-IYmD16EKuu3CZWwV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size…...

oracle linux7安装oracle11g0204
1、平时需要修改 /etc/redhat-release文件为Red Hat Enterprise Linux 7,这次不需要了。 2、关闭selinx nano /etc/selinux/config 改为disabled 3、nano /etc/hosts 修改解析 在oracle服务器中增加 /etc/hosts中一个对应 192.168.1.10 CLOUD-MC-SQL1 4、修改系统文件 /…...

STM32--ADC
一、简介 *ADC(Analog-Digital Converter)模拟-数字转换器 *ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁 *12位逐次逼近型ADC,1us转换时间 *输入电压范围:0~3.3V&…...

【TB作品】msp430f149单片机,读取ds18b20温度,显示到数码管,串口发送温度到电脑
功能 msp430f149单片机 读取ds18b20温度,显示到数码管,串口发送温度到电脑 部分程序 /************************************************* * 程序功能:用DS18B20测量室温并在数码管上显示。 * --------------------------------------…...

vue组合式和选项式
Vue中的组合式(Composition API)和选项式(Options API)是两种不同的编写组件逻辑的方法。 组合式API(Composition API): 使用函数来定义组件逻辑,可以更灵活地重用和组合逻辑。使用setup函数作为组件的入口点,在这里可以访问pro…...

使用OpenCV创建全景图像
使用OpenCV创建全景图像 前言图像拼接策略创建全景图像相关链接前言 在本节中,我们将学习组合多个图像来创建全景图像。使用相机拍摄全景照片时,通常会拍摄多张照片,通过算法将这些图像中共同存在的元素(从左到右)映射到一张单独的图像中。为了执行图像的拼接,将利用 cv2 …...

Nios II 实现流水灯实验
Nios II 实现流水灯实验 一.硬件设计1.新建Quartus项目2. 设计Nios ii 二.软件设计 前言 实验目标: 学习 Quartus 、Platform Designer、Nios-II SBT 的基本操作;初步了解 SOPC 的开发流程,基本掌握 Nios-II 软核的定制方法;掌握 …...

Spring boot 随笔 1 DatasourceInitializer
0. 为啥感觉升级了 win11 之后,电脑像是刚买回来的,很快 这篇加餐完全是一个意外:时隔两年半,再看 Springboot-quartz-starter 集成实现的时候,不知道为啥我的h2 在应用启动的时候,不能自动创建quartz相关…...

vue3_组件间通信方式
目录 一、父子通信 1.父传子( defineProps) 2.父传子(useAttrs) 3.子传父(ref,defineExpose ) 4.子传父(defineEmits) 5.子传父(v-model) …...

mysql的锁(全局锁)
文章目录 mysql按照锁的粒度分类全局锁概念:全局锁使用场景:全局锁备份案例: mysql按照锁的粒度分类 全局锁 概念: 全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是: Flush tables with…...

Spring Boot 整合开源 Tess4J库 实现OCR图片文字识别
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...

使用 Docker 和 Docker Compose 部署 Vue
使用 Docker 和 Docker Compose 部署 Vue 项目有两种方式:直接使用 Docker 和使用 Docker Compose。 创建 Dockerfile 在Vue.js项目根目录下创建一个 Dockerfile 的文件 # 使用最新的官方 Node.js 镜像作为基础镜像,并命名为 builder 阶段 FROM node:…...

力扣linkedlist
反转链表、 public class reverseList { // 1->2->3->o 、 o<-1<-2<-3public ListNode reverseList(ListNode head){//反转链表ListNode prevnull;ListNode currhead;while(curr!null){ListNode nextcurr.next;curr.nextprev;prevcurr;currnext;}retu…...

springboot 启动原理、启动过程、启动机制的介绍
Spring Boot 是一种基于 Java 的框架,用于创建独立的、生产级别的 Spring 应用程序。它的主要目标是简化 Spring 应用的初始搭建和开发过程,同时提供一系列大型项目常见的非功能性特征(如嵌入式服务器、安全性、度量、健康检查和外部化配置)。以下是 Spring Boot 的一些核心…...

大模型ChatGLM的部署与微调
前言:最近大模型太火了,导师让我看看能不能用到自己的实验中,就想着先微调一个chatGLM试试水,微调的过程并不难,难的的硬件条件跟不上,我试了一下lora微调,也算跑通了吧,虽然最后评估…...

全球七家半导体工厂建设受阻:英特尔、三星、台积电等面临延期挑战
过去两年间,半导体行业经历了市场衰退、复苏慢于预期以及资金紧缩等问题,英特尔、台积电和三星等主要企业虽然继续推进扩张计划,但不断调整和放缓工厂建设的步伐与时间表,以更好地服务于长期发展目标。据统计,全球范围…...

JavaScript错误;调试;“=”,“==”,“===”的区别
try...catch语句 try..catch语句是JavaScript中用来处理异常的一种方式。它允许我们在代码块中尝试执行可能会引发错误的代码,并在发生错误时捕获并处理异常。 下面是try..catch语句的基本语法: try {// 可能会引发错误的代码 } catch (error) {// 处理…...

thinkphp6的请求
由于笔者是刚入门thinkphp,所以学习时对照thinkphp的官网,各位读者也可以对照官网学习。还麻烦各位笔者一键三连,谢谢。 1.请求对象 当前的请求对象由think\Request类负责,该类不需要单独实例化调用,通常使用依赖注入…...

ant design vue 表格错位,表头错位
ant design vue 表格错位,表头错位 在官网中,我们可以看到下面图片的描述: 好的,我们按照官网来一波,前面都设置了固定宽度,娃哈哈就不设置了.会出现下面效果 为啥会多了一个竖线(因为按照官网来一波x:1300,这个1300太小的原因) 3.那我们把1300改成1600,1700试试,结果也不是…...

【小白向】微信小程序解密反编译教程
# 前言 最近笔者有做到微信小程序的渗透测试,其中有一个环节就是对微信小程序的反编译进行源码分析,所谓微信小程序反编译,就是将访问的小程序进行反向编译拿到部分源码,然后对源码进行安全审计,分析出其中可能存在的…...