当前位置: 首页 > news >正文

比较(二)利用python绘制雷达图

比较(二)利用python绘制雷达图

雷达图(Radar Chart)简介

1

雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。

快速绘制

  1. 基于matplotlib

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 绘制数据
    ax.plot(angles, values, linewidth=1, linestyle='solid')# 填充区域颜色
    ax.fill(angles, values, 'b', alpha=0.1)plt.show()
    

    2

定制多样化的雷达图

自定义雷达图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

  1. 一图绘制多个雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 偏移-将第一个轴位于顶部
    ax.set_theta_offset(pi / 2)
    ax.set_theta_direction(-1)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 添加多个极坐标图
    # 绘制第一个图
    values = df.loc[0].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
    ax.fill(angles, values, 'b', alpha=0.1)# 绘制第二个图
    values = df.loc[1].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
    ax.fill(angles, values, 'r', alpha=0.1)# 图例
    plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))plt.show()
    

    3

  2. 分组雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 自定义函数-每一行绘制一个雷达图
    def make_spider( row, title, color):# 计算变量个数categories=list(df)[1:]N = len(categories)# 计算角度angles = [n / float(N) * 2 * pi for n in range(N)]angles += angles[:1]# 初始化布局ax = plt.subplot(2,2,row+1, polar=True, )# 偏移至顶部ax.set_theta_offset(pi / 2)ax.set_theta_direction(-1)# x标签plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签ax.set_rlabel_position(0)plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)plt.ylim(0,40)# 极坐标图values = df.loc[row].drop('group').values.flatten().tolist()values += values[:1]ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')ax.fill(angles, values, color=color, alpha=0.4)# 标题plt.title(title, size=11, color=color, y=1.1)# 图标参数
    my_dpi=96
    plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)# 调色板
    my_palette = plt.cm.get_cmap("Set2", len(df.index))# 绘制多个图
    for row in range(0, len(df.index)):make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
    

    4

总结

以上通过matplotlib结合极坐标绘制雷达图,并通过其他绘图知识自定义各种各样的雷达图来适应相关使用场景。

共勉~

相关文章:

比较(二)利用python绘制雷达图

比较(二)利用python绘制雷达图 雷达图(Radar Chart)简介 雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。 快速绘制…...

Visual Studio怎么用?

Visual Studio的使用涉及多个方面,以下是一个清晰的使用指南,涵盖了Visual Studio的基本功能、安装、界面介绍、项目创建、代码编写、调试和发布等关键步骤: 一、Visual Studio简介 Visual Studio是由微软公司开发的一款集成开发环境&#…...

Python工程中,__init__.py文件有什么用

在Python工程中,__init__.py 文件有几个重要的用途: 标识目录为包: 在Python 3.3之前,__init__.py 文件的存在是为了告诉解释器,该目录是一个Python包。这使得包中的模块可以被导入和使用。即使在Python 3.3之后可以没…...

YOLOv10环境搭建推理测试

引子 两个多月前YOLOv9发布(感兴趣的童鞋可以移步YOLOv9环境搭建&推理测试_yolov9安装-CSDN博客),这才过去这么短的时间,YOLOv10就横空出世了。现在YOLO系列搞得就和追剧一样了。。。OK,那就让我们开始吧。 一、…...

tomcat-memcached会话共享配置

目录 1、安装memcache服务 2、把依赖的jar包移至tomcat/lib目录下 3、配置tomcat/conf/context.xml 4、重启tomcat服务 1、安装memcache服务 具体安装步骤此处不详细说明,自行根据实际情况安装即可 2、把依赖的jar包移至tomcat/lib目录下 3、配置tomcat/conf/c…...

404错误页面源码,简单实用的html错误页面模板

源码描述 小编精心准备一款404错误页面源码,简单实用的html错误页面模板,简单大气的页面布局,可以使用到不同的网站中,相信大家一定会喜欢的 效果预览 源码下载 https://www.qqmu.com/3375.html...

AI程序员来了,大批码农要失业

根据GitHub发布的《Octoverse 2021年度报告》,2021年中国有755万程序员,排名全球第二。 ChatGPT的出现,堪比在全球互联网行业点燃了一枚“核弹”,很多人都会担心“自己的工作会不会被AI取代”。 而2024年的AI进展速度如火箭般&am…...

车联网安全入门——CAN总线模糊测试

文章目录 车联网安全入门——CAN总线模糊测试介绍主要特点使用场景 模糊测试(Fuzz Testing)CAN 总线模糊测试(CAN Packet Fuzzing)主要步骤工具和软件主要目标 Can-Hax安装使用获得指纹模糊测试 SavvyCAN 总结参考 车联网安全入门…...

JDBC常见异常(10)—预编译模式下占位符动态排序字段失效

场景需求 需要根据不同的列进行对应的排序操作,实现动态列名排序 类似🐟动态查询或更新 但是JDBC预编译模式下占位符的排序字段失效 SQL语句 分页查询 select * from (select t.*, rownum rn from(select * from emp order by empno desc) t where …...

爬虫入门教程:爬虫概述

在数字化时代,数据已经成为我们生活和工作中不可或缺的一部分。而如何高效、准确地获取这些数据,成为了许多领域面临的共同问题。今天,我们就来一起探讨一下爬虫技术,这个能够自动从互联网上抓取信息的神奇工具。 一、什么是爬虫…...

【工具】windows下VMware17解锁mac安装选项(使用unlocker427)

目录 0.简介 1.环境 2.安装前后对比 3.详细安装过程 3.1 下载unlocker427 1)下载地址 2)下载unlocker427.zip 3)解压之后是这样的 4)复制iso中的两个文件到你本地的VMware的安装目录下 5)复制windows下的所有…...

JS 自测题 —— 手写 class

现有三种菜单:button 类型,select 类型,modal 类型。 共同特点 title icon 属性isDisabled 方法(可直接返回 false)exec 方法,执行菜单的逻辑 不同 button 类型,执行 exec 时打印 helloselect …...

Keras深度学习框架实战(7):使用YOLOV8和KerasCV进行高效的图像物体识别

1、绪论 1.1 KerasCV简介 KerasCV是一个专注于计算机视觉任务的模块化组件库,基于Keras构建,可与TensorFlow、JAX或PyTorch等框架配合使用。 概念与定位: KerasCV是Keras API的水平扩展,提供了一系列新的第一方Keras对象&#x…...

Django视图层探索:GET/POST请求处理、参数传递与响应方式详解

系列文章目录 Django入门全攻略:从零搭建你的第一个Web项目Django ORM入门指南:从概念到实践,掌握模型创建、迁移与视图操作Django ORM实战:模型字段与元选项配置,以及链式过滤与QF查询详解Django ORM深度游&#xff…...

磁盘配额的具体操作

磁盘配额: linux的磁盘空间有两个方面:第一个是物理空间,也就是磁盘的容量 第二个inode号耗尽,也无法写入 linux根分区:根分区的空间完全耗尽,服务程序崩溃,系统也无法启动了。 为了防止有人…...

STM 32_HAL_SDIO_SD卡

STM32的SDIO(Secure Digital Input Output) 接口是一种用于SD卡和MMC卡的高速数据传输接口。它允许STM32微控制器与多种存储卡和外设进行通信,支持多媒体卡(MMC卡)、SD存储卡、SDI/O卡和CE-ATA设备。STM32的SDIO控制器…...

人脸识别系统之动态人脸识别

二.动态人脸识别 1.摄像头人脸识别 1.1.导入资源包 import dlib import cv2 import face_recognition from PIL import Image, ImageTk import tkinter as tk import os注:这些导入语句允许您在代码中使用这些库和模块提供的功能,例如创建…...

Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)

文章目录 背景代码 背景 如果我们想要根据json标注文件,获取里面的指定目标的裁剪区域,那么我们可以根据以下代码来实现(也可以校验标注情况)。 代码 from tqdm import tqdm import os, json, cv2, copy import numpy as npdef…...

LabVIEW在高校电力电子实验中的应用

概述:本文介绍了如何利用LabVIEW优化高校电力电子实验,通过图形化编程实现参数调节、实时数据监控与存储,并与Simulink联动,提高实验效率和数据处理能力。 需求背景高校实验室在进行电机拖动和电力电子实验时,通常使用…...

rtsp python实现

1. rtsp rtp rtcp https://hope-wisdom.blog.csdn.net/article/details/138259027 2.rtsp加速 https://mp.weixin.qq.com/s/0C1b-8pFw0HaE1xpNbrxxw 3. 实现了一部分获取数据 import socket import base64 import threading import struct# 定义 RTSP 请求 def send_rtsp_…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

js 设置3秒后执行

如何在JavaScript中延迟3秒执行操作 在JavaScript中&#xff0c;要设置一个操作在指定延迟后&#xff08;例如3秒&#xff09;执行&#xff0c;可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法&#xff0c;它接受两个参数&#xff1a; 要执行的函数&…...