当前位置: 首页 > news >正文

比较(二)利用python绘制雷达图

比较(二)利用python绘制雷达图

雷达图(Radar Chart)简介

1

雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。

快速绘制

  1. 基于matplotlib

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 绘制数据
    ax.plot(angles, values, linewidth=1, linestyle='solid')# 填充区域颜色
    ax.fill(angles, values, 'b', alpha=0.1)plt.show()
    

    2

定制多样化的雷达图

自定义雷达图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

  1. 一图绘制多个雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 偏移-将第一个轴位于顶部
    ax.set_theta_offset(pi / 2)
    ax.set_theta_direction(-1)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 添加多个极坐标图
    # 绘制第一个图
    values = df.loc[0].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
    ax.fill(angles, values, 'b', alpha=0.1)# 绘制第二个图
    values = df.loc[1].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
    ax.fill(angles, values, 'r', alpha=0.1)# 图例
    plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))plt.show()
    

    3

  2. 分组雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 自定义函数-每一行绘制一个雷达图
    def make_spider( row, title, color):# 计算变量个数categories=list(df)[1:]N = len(categories)# 计算角度angles = [n / float(N) * 2 * pi for n in range(N)]angles += angles[:1]# 初始化布局ax = plt.subplot(2,2,row+1, polar=True, )# 偏移至顶部ax.set_theta_offset(pi / 2)ax.set_theta_direction(-1)# x标签plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签ax.set_rlabel_position(0)plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)plt.ylim(0,40)# 极坐标图values = df.loc[row].drop('group').values.flatten().tolist()values += values[:1]ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')ax.fill(angles, values, color=color, alpha=0.4)# 标题plt.title(title, size=11, color=color, y=1.1)# 图标参数
    my_dpi=96
    plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)# 调色板
    my_palette = plt.cm.get_cmap("Set2", len(df.index))# 绘制多个图
    for row in range(0, len(df.index)):make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
    

    4

总结

以上通过matplotlib结合极坐标绘制雷达图,并通过其他绘图知识自定义各种各样的雷达图来适应相关使用场景。

共勉~

相关文章:

比较(二)利用python绘制雷达图

比较(二)利用python绘制雷达图 雷达图(Radar Chart)简介 雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。 快速绘制…...

Visual Studio怎么用?

Visual Studio的使用涉及多个方面,以下是一个清晰的使用指南,涵盖了Visual Studio的基本功能、安装、界面介绍、项目创建、代码编写、调试和发布等关键步骤: 一、Visual Studio简介 Visual Studio是由微软公司开发的一款集成开发环境&#…...

Python工程中,__init__.py文件有什么用

在Python工程中,__init__.py 文件有几个重要的用途: 标识目录为包: 在Python 3.3之前,__init__.py 文件的存在是为了告诉解释器,该目录是一个Python包。这使得包中的模块可以被导入和使用。即使在Python 3.3之后可以没…...

YOLOv10环境搭建推理测试

引子 两个多月前YOLOv9发布(感兴趣的童鞋可以移步YOLOv9环境搭建&推理测试_yolov9安装-CSDN博客),这才过去这么短的时间,YOLOv10就横空出世了。现在YOLO系列搞得就和追剧一样了。。。OK,那就让我们开始吧。 一、…...

tomcat-memcached会话共享配置

目录 1、安装memcache服务 2、把依赖的jar包移至tomcat/lib目录下 3、配置tomcat/conf/context.xml 4、重启tomcat服务 1、安装memcache服务 具体安装步骤此处不详细说明,自行根据实际情况安装即可 2、把依赖的jar包移至tomcat/lib目录下 3、配置tomcat/conf/c…...

404错误页面源码,简单实用的html错误页面模板

源码描述 小编精心准备一款404错误页面源码,简单实用的html错误页面模板,简单大气的页面布局,可以使用到不同的网站中,相信大家一定会喜欢的 效果预览 源码下载 https://www.qqmu.com/3375.html...

AI程序员来了,大批码农要失业

根据GitHub发布的《Octoverse 2021年度报告》,2021年中国有755万程序员,排名全球第二。 ChatGPT的出现,堪比在全球互联网行业点燃了一枚“核弹”,很多人都会担心“自己的工作会不会被AI取代”。 而2024年的AI进展速度如火箭般&am…...

车联网安全入门——CAN总线模糊测试

文章目录 车联网安全入门——CAN总线模糊测试介绍主要特点使用场景 模糊测试(Fuzz Testing)CAN 总线模糊测试(CAN Packet Fuzzing)主要步骤工具和软件主要目标 Can-Hax安装使用获得指纹模糊测试 SavvyCAN 总结参考 车联网安全入门…...

JDBC常见异常(10)—预编译模式下占位符动态排序字段失效

场景需求 需要根据不同的列进行对应的排序操作,实现动态列名排序 类似🐟动态查询或更新 但是JDBC预编译模式下占位符的排序字段失效 SQL语句 分页查询 select * from (select t.*, rownum rn from(select * from emp order by empno desc) t where …...

爬虫入门教程:爬虫概述

在数字化时代,数据已经成为我们生活和工作中不可或缺的一部分。而如何高效、准确地获取这些数据,成为了许多领域面临的共同问题。今天,我们就来一起探讨一下爬虫技术,这个能够自动从互联网上抓取信息的神奇工具。 一、什么是爬虫…...

【工具】windows下VMware17解锁mac安装选项(使用unlocker427)

目录 0.简介 1.环境 2.安装前后对比 3.详细安装过程 3.1 下载unlocker427 1)下载地址 2)下载unlocker427.zip 3)解压之后是这样的 4)复制iso中的两个文件到你本地的VMware的安装目录下 5)复制windows下的所有…...

JS 自测题 —— 手写 class

现有三种菜单:button 类型,select 类型,modal 类型。 共同特点 title icon 属性isDisabled 方法(可直接返回 false)exec 方法,执行菜单的逻辑 不同 button 类型,执行 exec 时打印 helloselect …...

Keras深度学习框架实战(7):使用YOLOV8和KerasCV进行高效的图像物体识别

1、绪论 1.1 KerasCV简介 KerasCV是一个专注于计算机视觉任务的模块化组件库,基于Keras构建,可与TensorFlow、JAX或PyTorch等框架配合使用。 概念与定位: KerasCV是Keras API的水平扩展,提供了一系列新的第一方Keras对象&#x…...

Django视图层探索:GET/POST请求处理、参数传递与响应方式详解

系列文章目录 Django入门全攻略:从零搭建你的第一个Web项目Django ORM入门指南:从概念到实践,掌握模型创建、迁移与视图操作Django ORM实战:模型字段与元选项配置,以及链式过滤与QF查询详解Django ORM深度游&#xff…...

磁盘配额的具体操作

磁盘配额: linux的磁盘空间有两个方面:第一个是物理空间,也就是磁盘的容量 第二个inode号耗尽,也无法写入 linux根分区:根分区的空间完全耗尽,服务程序崩溃,系统也无法启动了。 为了防止有人…...

STM 32_HAL_SDIO_SD卡

STM32的SDIO(Secure Digital Input Output) 接口是一种用于SD卡和MMC卡的高速数据传输接口。它允许STM32微控制器与多种存储卡和外设进行通信,支持多媒体卡(MMC卡)、SD存储卡、SDI/O卡和CE-ATA设备。STM32的SDIO控制器…...

人脸识别系统之动态人脸识别

二.动态人脸识别 1.摄像头人脸识别 1.1.导入资源包 import dlib import cv2 import face_recognition from PIL import Image, ImageTk import tkinter as tk import os注:这些导入语句允许您在代码中使用这些库和模块提供的功能,例如创建…...

Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)

文章目录 背景代码 背景 如果我们想要根据json标注文件,获取里面的指定目标的裁剪区域,那么我们可以根据以下代码来实现(也可以校验标注情况)。 代码 from tqdm import tqdm import os, json, cv2, copy import numpy as npdef…...

LabVIEW在高校电力电子实验中的应用

概述:本文介绍了如何利用LabVIEW优化高校电力电子实验,通过图形化编程实现参数调节、实时数据监控与存储,并与Simulink联动,提高实验效率和数据处理能力。 需求背景高校实验室在进行电机拖动和电力电子实验时,通常使用…...

rtsp python实现

1. rtsp rtp rtcp https://hope-wisdom.blog.csdn.net/article/details/138259027 2.rtsp加速 https://mp.weixin.qq.com/s/0C1b-8pFw0HaE1xpNbrxxw 3. 实现了一部分获取数据 import socket import base64 import threading import struct# 定义 RTSP 请求 def send_rtsp_…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...