模电学习6. 常用的三极管放大电路
模电学习6. 常用的三极管放大电路
- 一、判断三极管的工作状态
- 1. 正偏与反偏的概念
- 2. 工作状态的简单判断
- 二、三种重要的放大电路
- 1. 共射电路
- 2. 共集电极放大电路
- 3. 共基极放大电路

一、判断三极管的工作状态
1. 正偏与反偏的概念
晶体管分P区和N区, 当P区电压大于N区电压时是正偏,反之就是反偏。
2. 工作状态的简单判断
| 引脚 | 放大 | 饱和 | 截止 |
|---|---|---|---|
| 发射结 | 正偏 | 正偏 | 反偏 |
| 集电结 | 反偏 | 正偏 | 反偏 |
示例:

该图中, 发射结是正偏 、 集电结反偏,三极管工作在放大状态。
二、三种重要的放大电路
1. 共射电路
集电极接负载

IB∗β=ICI_B * \beta = I_CIB∗β=IC
IE=IB+ICI_E=I_B+I_CIE=IB+IC
当基极流入电流时,就可以控制 C极电流成倍变化。
如果这时在极电极接一个负载:

当电流增大时,Rc上的电压会增大,这时:Vo=Vcc−URcVo=V_{cc}-U_{Rc}Vo=Vcc−URc会减小。
总结: 该电路中,电流信号越大,Vo越小;相反,电流信号越小,Vo成倍增大,所以该共射放大电路可以反相放大电压。
2. 共集电极放大电路
把上面的负载改到发射极上:

- 如果CE要导通,VBEV_{BE}VBE 为0.7V,所以这时 VoV_oVo 比 ViV_iVi 还要小,不能放大电压。
- 而基极电流增大时, 由于IE=IB+ICI_E = I_B + I_CIE=IB+IC,所以IEI_EIE输出的电流会增大。
所以它可以同相放大电流。
3. 共基极放大电路

在 B-E间接入负电源-Vee,给BE供正电流。
再给B-C接入正电源Vcc:

IBI_BIB和ICI_CIC汇总成 IEI_EIE, 这时Vi信号从E进入,如下图所示:

加入电阻RER_ERE,合理设置阻值,可以让大部分电流流向发射极而不是基极。
输入的电流与IEI_EIE叠加,导致发射极电流减小。由于发射极电流是基极与集电极电流之和,所以IBI_BIB和ICI_CIC都会减小;由于 IC=β∗IBI_C = \beta * I_BIC=β∗IB ,所以减小的电流主要是在集电集上,基极基本可以忽略。
现在在集电极增加一个电阻:

可知电阻上的电压为: URC=R∗IU_{R_C} = R*IURC=R∗I,当ICI_CIC减小时,电阻的电压降会减小;
输出电压:Vo=Vcc−URCV_o = Vcc-U_{R_C}Vo=Vcc−URC,所以VoV_oVo会增大 。
所以:当输入电流增大,输出电流会减小,可以同相放大电压。
相关文章:
模电学习6. 常用的三极管放大电路
模电学习6. 常用的三极管放大电路一、判断三极管的工作状态1. 正偏与反偏的概念2. 工作状态的简单判断二、三种重要的放大电路1. 共射电路2. 共集电极放大电路3. 共基极放大电路一、判断三极管的工作状态 1. 正偏与反偏的概念 晶体管分P区和N区, 当P区电压大于N区…...
Lesson 6.6 多分类评估指标的 macro 和 weighted 过程 Lesson 6.7 GridSearchCV 的进阶使用方法
文章目录一、多分类评估指标的 macro 和 weighted 过程1. 多分类 F1-Score 评估指标2. 多分类 ROC-AUC 评估指标二、借助机器学习流构建全域参数搜索空间三、优化评估指标选取1. 高级评估指标的选用方法2. 同时输入多组评估指标四、优化后建模流程在正式讨论关于网格搜索的进阶…...
基于 Python 实时图像获取及处理软件图像获取;图像处理;人脸识别设计 计算机毕设 附完整代码+论文 +报告
界面结果:图像获取;图像处理;人脸识别 程序结构设计 图形用户界面设计与程序结构设计是互为表里的。或者说,程序结构设计是软件设计最本质、最核心的内容。徒有界面而内部逻辑结构混乱的软件一无是处。 Windows 操作系统是一款图形化的操作系统,相比于早期的计算机使用的命…...
前后端RSA互相加解密、加签验签、密钥对生成(Java)
目录一、序言二、关于PKCS#1和PKCS#8格式密钥1、简介2、区别二、关于JSEncrypt三、关于jsrsasign四、前端RSA加解密、加验签示例1、相关依赖2、cryptoUtils工具类封装3、测试用例五、Java后端RSA加解密、加验签1、CryptoUtils工具类封装2、测试用例六、前后端加解密、加验签交互…...
基于Java+SpringBoot+Vue前后端分离学生宿舍管理系统设计与实现
博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建、毕业项目实战、项目定制✌ 博主作品:《微服务实战》专栏是本人的实战经验总结,《S…...
前端高频面试题—JavaScript篇(二)
💻前端高频面试题—JavaScript篇(二) 🏠专栏:前端面试题 👀个人主页:繁星学编程🍁 🧑个人简介:一个不断提高自我的平凡人🚀 🔊分享方向…...
【微信小游戏开发笔记】第二节:Cocos开发界面常用功能简介
Cocos开发界面常用功能简介 本章只介绍微信小游戏开发时常用的功能,其他功能不常用,写多了记不住(其实是懒 -_-!): 层级管理器,用于操作各个节点。资源管理器,用于操作各种文件资源。场景编辑…...
3分钟,学会了一个调试CSS的小妙招
Ⅰ. 作用 用于调试CSS , 比控制台添更加方便,不需要寻找 ;边添加样式,边可以查看效果,适合初学者对CSS 的理解和学习; Ⅱ. 快速实现(两边) ① 显示这个样式眶 给 head 和 style 标签添加一个…...
【项目精选】基于jsp的健身俱乐部会员系统
点击下载源码 社会可行性 随着社会的发展和计算机技术的进步,人类越来越依赖于信息化的管理系统,这种系统能更加方便的获得信息以及处理信息。人们都改变了过去的思维,开始走向了互联网的时代,在 可行性小结 本章在技术可行性上…...
java注解
1. Java注解(Annotation) 2. Java注解分类 3. JDK基本注解 4. JDK元注解 5. 注解分类 6. 自定义注解开发 7. 提取Annotation信息 8. 注解处理器 9. 动态注解处理器(spring aop方式) 1. Java注解(Annotation) Java注解是附加在代码中的一些元信息,用于…...
移动测试相关
一、环境搭建 准备工作: (python、pycharm安装配置好) 1、Java SDK 安装配置 Java Downloads | Oracle 下载安装后配置系统环境变量:JAVA_HOME(jdk根目录路径)和path(jdk根目录下的bin目录路径…...
SIGIR22:User-controllable Recommendation Against Filter Bubbles
User-controllable Recommendation Against Filter Bubbles 摘要 推荐系统经常面临过滤气泡的问题:过度推荐基于用户特征以及历史交互的同质化项目。过滤气泡将会随着反馈循环增长,缩小了用户兴趣。现有的工作通常通过纳入诸如多样性和公平性等准确性之…...
Python中的进程线程
文章目录前言多进程与多线程基本概念多进程multiprocessing 类对象进程池subprocess模块进程间通信多线程threading实现线程操作线程共享所有变量线程锁参考资料前言 又花了点时间学习了一下Python中的多线程与多进程的知识点,梳理一下供复习参考 多进程与多线程 …...
python(8):使用conda update更新conda后,anaconda所有环境崩溃----问题没有解决,不要轻易更新conda
文章目录0. 教训1. 问题:使用conda update更新conda后,anaconda所有环境崩溃1.1 问题描述1.2 我搜索到的全网最相关的问题----也没有解决3 尝试流程记录3.1 重新安装pip3.2 解决anaconda编译问题----没成功0. 教训 (1) 不要轻易使用conda update更新conda----我遇到…...
c++11 标准模板(STL)(std::multimap)(四)
定义于头文件 <map> template< class Key, class T, class Compare std::less<Key>, class Allocator std::allocator<std::pair<const Key, T> > > class multimap;(1)namespace pmr { template <class Key, class T…...
乐观锁及悲观锁
目录 1.乐观锁 (1).定义 (2).大体流程 (3).实现 (4).总结 2.悲观锁 (1).定义 (2).大体流程 (3).实现 (4).缺点 (5).总结 1.乐观锁 (1).定义 乐观锁在操作数据时非常乐观,认为别的线程不会同时修改数据所以不会上锁,但是在更新的时候会判断一…...
常见的锁策略
注意: 接下来讲解的锁策略不仅仅是局限于 Java . 任何和 "锁" 相关的话题, 都可能会涉及到以下内容. 这些特性主要是给锁的实现者来参考的.普通的程序猿也需要了解一些, 对于合理的使用锁也是有很大帮助的. 1.乐观锁 vs 悲观锁 悲观锁: (认为出现锁冲…...
springboot学习(八十) springboot中使用Log4j2记录分布式链路日志
在分布式环境中一般统一收集日志,但是在并发大时不好定位问题,大量的日志导致无法找出日志的链路关系。 可以为每一个请求分配一个traceId,记录日志时,记录此traceId,从网关开始,依次将traceId记录到请求头…...
10种ADC软件滤波方法及程序
10种ADC软件滤波方法及程序一、10种ADC软件滤波方法1、限幅滤波法(又称程序判断滤波法)2、中位值滤波法3、算术平均滤波法4、递推平均滤波法(又称滑动平均滤波法)5、中位值平均滤波法(又称防脉冲干扰平均滤波法&#x…...
第五章:Windows server加域
加入AD域:教学视频:https://www.bilibili.com/video/BV1xM4y1D7oL/?spm_id_from333.999.0.0首先我们选择一个干净的,也就是新建的没动过的Windows server虚拟机。我们将DNS改成域的ip地址,还要保证它们之间能ping的通,…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
