10种ADC软件滤波方法及程序
10种ADC软件滤波方法及程序
- 一、10种ADC软件滤波方法
- 1、限幅滤波法(又称程序判断滤波法)
- 2、中位值滤波法
- 3、算术平均滤波法
- 4、递推平均滤波法(又称滑动平均滤波法)
- 5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
- 6、限幅平均滤波法
- 7、一阶滞后滤波法
- 8、加权递推平均滤波法
- 9、消抖滤波法
- 10、限幅消抖滤波法
- 二、10种软件滤波方法的示例程序
- 三、十大滤波算法
文章来源
https://blog.csdn.net/twd_1991/article/details/82143054?spm=1001.2101.3001.6650.20&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-20-82143054-blog-107730436.pc_relevant_aa&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-20-82143054-blog-107730436.pc_relevant_aa&utm_relevant_index=24
一、10种ADC软件滤波方法
1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点
无法抑制那种周期性的干扰
平滑度差
2、中位值滤波法
A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜
3、算术平均滤波法
A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=412;温度,N=14
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM
6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理
B、优点:
融合了两种滤波法的优点 _
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
比较浪费RAM
7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)本次采样值+a上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号
8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
B、优点:
适用于有较大纯滞后时间常数的对象
和采样周期较短的系统
C、缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
B、优点:
对于变化缓慢的被测参数有较好的滤波效果,
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
C、缺点:
对于快速变化的参数不宜
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
10、限幅消抖滤波法
A、方法:
相当于“限幅滤波法”+“消抖滤波法”
先限幅,后消抖
B、优点:
继承了“限幅”和“消抖”的优点
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
C、缺点:
对于快速变化的参数不宜
二、10种软件滤波方法的示例程序
网上查找
三、十大滤波算法
https://blog.csdn.net/weixin_42617385/article/details/107730436
相关文章:
10种ADC软件滤波方法及程序
10种ADC软件滤波方法及程序一、10种ADC软件滤波方法1、限幅滤波法(又称程序判断滤波法)2、中位值滤波法3、算术平均滤波法4、递推平均滤波法(又称滑动平均滤波法)5、中位值平均滤波法(又称防脉冲干扰平均滤波法&#x…...

第五章:Windows server加域
加入AD域:教学视频:https://www.bilibili.com/video/BV1xM4y1D7oL/?spm_id_from333.999.0.0首先我们选择一个干净的,也就是新建的没动过的Windows server虚拟机。我们将DNS改成域的ip地址,还要保证它们之间能ping的通,…...
Elasticsearch:获取 nested 类型数组中的所有元素
在我之前的文章 “Elasticsearch: object 及 nested 数据类型” 对 nested 数据类型做了一个比较详细的介绍。在实际使用中,你在构建查询时肯定会遇到一些问题。根据官方文档介绍,nested 类型字段在隐藏数组中索引其每个项目,这允许独立于索引…...
English Learning - Day53 作业打卡 2023.2.7 周二
English Learning - Day53 作业打卡 2023.2.7 周二引言1. 我必须承认,我之前学习没你用功。have to VS must2. 这跟我想得一样简单。3. 生活并不像它看上去那么顺风顺水,但也不会像我们想象得那么难。Look VS seem4. 你比去年高多了。5. 你关心你的工作胜…...

SpringMVC--注解配置SpringMVC、SpringMVC执行流程
注解配置SpringMVC 使用配置类和注解代替web.xml和SpringMVC配置文件的功能 创建初始化类,代替web.xml 在Servlet3.0环境中,容器会在类路径中查找实现javax.servlet.ServletContainerInitializer接口的类, 如果找到的话就用它来配置Servle…...

JavaScript中数组常用的方法
文章目录前言常用数组方法1、 join( )2、push()与 pop()3、shift()与 unshift()4、sort()5、reverse()6、slice(ÿ…...
ModuleNotFoundError: No module named ‘pip‘
项目场景:pip 错误 Traceback (most recent call last): File "E:\KaiFa\Python\Python38\lib\runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "E:\KaiFa\Python\Python38\lib\runpy.py&qu…...
ROS2 入门应用 发布和订阅(C++)
ROS2 入门应用 发布和订阅(C)1. 创建功能包2. 创建源文件2.1. 话题发布2.2. 话题订阅3. 添加依赖关系4. 添加编译信息4.1. 添加搜索库4.2. 增加可执行文件4.3. 增加可执行文件位置5. 编译和运行1. 创建功能包 在《ROS2 入门应用 工作空间》中已创建和加…...

XSS漏洞,通过XSS实现网页挂马
**今天讲下通过XSS实现网页挂马~*,目的是了解安全方面知识,提升生活网络中辨别度 原理: 实验分为两部分: 1、通过Kali linux,利用MS14_064漏洞,制作一个木马服务器。存在该漏洞的用户一旦通过浏览器访问木…...

家政服务小程序实战教程09-图文卡片
小程序还有一类需求就是展示服务的列表,我们这里用图文卡片组件来实现,我们先要添加一个标题,使用网格布局来实现 第一列添加一个文本组件,第二列添加一个图标组件 修改文本组件的文本内容,设置外边距 设置第二列的样式…...

国内唯一一部在CentOS下正确编译安装和使用RediSearch的教程
开篇 Redis6开始增加了诸多激动人心的模块,特别是:RedisJSON和RediSearch。这两个模块已经完全成熟了。它们可以直接使用我们的生产上的Redis服务器来做全文搜索(二级搜索)以取得更廉价的硬件成本、同时在效率上竟然超过了Elastic…...

前端对于深拷贝和浅拷贝的应用和思考
浅拷贝 浅拷贝 : 浅拷贝是指对基本类型的值拷贝,以及对对象类型的地址拷贝。它是将数据中所有的数据引用下来,依旧指向同一个存放地址,拷贝之后的数据修改之后,也会影响到原数据的中的对象数据。最简单直接的浅拷贝就…...

Java基础常见面试题(三)
String 字符型常量和字符串常量的区别? 形式上: 字符常量是单引号引起的一个字符,字符串常量是双引号引起的若干个字符; 含义上: 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算;字符串常量代表一个地址值…...

C++设计模式(13)——装饰模式
亦称: 装饰者模式、装饰器模式、Wrapper、Decorator 意图 装饰模式是一种结构型设计模式, 允许你通过将对象放入包含行为的特殊封装对象中来为原对象绑定新的行为。 问题 假设你正在开发一个提供通知功能的库, 其他程序可使用它向用户发…...

ESP-01S通过AT指令上报数据到阿里云物模型
ESP-01S使用AT指令上报数据到阿里云物模型 上篇文章介绍了如何用AT指令连接阿里云并进行通信:https://blog.csdn.net/weixin_46251230/article/details/128995530 但最终需要将传感器数据上报到云平台显示,所以需要建立阿里云物模型 阿里云平台建立物…...

【强化学习】马尔可夫决策过程MDP
1.马尔可夫决策过程MDP 1.1 MDP五元组 MDP<S,A,P,R,γ>MDP<\mathcal{S},\mathcal{A},\mathcal{P},\mathcal{R},\mathcal{\gamma}>MDP<S,A,P,R,γ>,其中: S\mathcal{S}S:状态空间A\mathcal{A}A:动作空间P\mathc…...

刘润:五维思考,让你站得更高、看得更远
原标题:刘润:五维思考,让你站得更高、看得更远 前言:遇到问题时,有的人很快就能想明白,有的人需要很久才能想明白,还有的人始终都想不明白。 而且,那些很快就能想明白的人࿰…...

从运维角度看微服务 k8s部署微服务【偏理论】【AL】
从运维角度看微服务 & 部署微服务【偏理论】 1、微服务的特点 服务组件化: 每个服务独立开发、部署,有效避免一个服务的修改引起整个系统重新部署。 技术栈灵活: 约定通信方式,使得服务本身功能实现对技术要求不再那么敏感。…...

专题 | 防抖和节流
一 防抖:单位时间内,频繁触发事件,只执行最后一次 场景:搜索框搜索输入(利用定时器,每次触发先清掉以前的定时器,从新开始) 节流:单位时间内,频繁触发事件&…...
C++入门:重载运算符和重载函数
C 允许在同一作用域中的某个函数和运算符指定多个定义,分别称为函数重载和运算符重载。重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明,但是它们的参数列表和定义(实现)不相同。当您调用一个重载函…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...