深度学习-07-反向传播的自动化
深度学习-07-反向传播的自动化
本文是《深度学习入门2-自製框架》 的学习笔记,记录自己学习心得,以及对重点知识的理解。如果内容对你有帮助,请支持正版,去购买正版书籍,支持正版书籍不仅是尊重作者的辛勤劳动,也是鼓励更多优秀作品问世。
当前笔记内容主要为:步骤7 反向传播的自动化 章节的相关理解。
书籍总共分为5个阶段,每个阶段分很多步骤,最终是一步一步实现一个深度学习框架。例如前两个阶段为:
第 1 阶段共包括 10 个步骤 。 在这个阶段,将创建自动微分的机制
第 2 阶段,从步骤11-24,该阶段的主要目标是扩展当前的 DeZero ,使它能够执行更复杂的计算 ,使它能 够处理接收多个输入的函数和返回多个输出的函数
1.为反向传播的自动化创造条件
之前我们在实现反向传播的时候,我们是手动编写进行反向传播计算的代码,这意味着我们每次都要编写这些代码。例如下面的:
A = Square()
B = Exp()
C = Square()
x = Variable(np.array(0.5))
a = A(x)
b = B(a)
y = C(b)
y.grad = np.array(1.0)
b.grad = C.backward(y.grad)
a.grad = B.backward(b.grad)
x.grad = A.backward(a.grad)
print(x.grad)
如果计算图不一样,那么我们每次就需要白那些不一样的代码来计算反向传播。
图:不同计算图的例子。

那我们就开始思考如果自动化这块内容?书中讲解了一种机制:无论普通的计算流程(正向传播)中是什么样的计算,反向传播都能 自动进行 。这里引入一个概念:Define- by-Run。
Define-by-Run;是在深度学习中进行计算时 ,在计算之间建立"连接"的机 制 。 这种机制也称为动态计算图
计算图都是流水线式的计算 。 因此,只要以列表的形式记录函数的顺序,就可以通过反向回溯自动进行反向传播
在实现反向传播的自动化之前,我们先思考一下变量和函数之间的关系。解决方案主要从这里入手。我们需要考察变量和函数的关系并且用代码表示出来。
函数的变量包括"输入变量 "(input) 和"输出变量"(output)。函数是变量的 "父母" 如果没有父母,说明这个变量是用户的输入变量。
修改Variable 定义,函数和变量之间的"连接,让这个"连接"在执行普通计算(正向传播)的那一刻创建。
class Variable:def __init__(self, data):self.data = dataself.grad = Noneself.creator = Nonedef set_creator(self,func):self.creator = func
上面代码,定义了熟悉 creator 标识是那个函数。并且定义了set 方法,来进行变量与函数之间的关联。
修改 Function 定义:
class Function:def __call__(self, input):x = input.datay = self.forward(x)output = Variable(y)output.set_creator(self) # 输出者保存创造者对象self.input = inputself.output = output # 保存输出者。我是创造者的信息,这是动态建立 "连接"这 一 机制的核心return outputdef forward(self, x):raise NotImplementedError() # 使用Function 这个方法forward 方法的人 , 这个方法应该通过继承采实现def backward(self, gy):raise NotImplementedError()
在函数执行时,就设置输出变量的 creator 为”自己“。并且将输出保存起来。
经过上面的操作后,变量和函数之间建立的联系,并且这两种联系的建立时代码执行过程中创建的。
有了连接,我们手动检查下,计算下反向遍历计算图
A = Square()B = Exp()C = Square()x = Variable(np.array(0.5))a = A(x)b = B(a)y = C(b)assert y.creator == Cassert y.creator.input == bassert y.creator.input.creator == Bassert y.creator.input.creator.input == aassert y.creator.input.creator.input.creator == Aassert y.creator.input.creator.input.creator.input == x
没有抛出异常,这意味着 assert 语句的所有条件都得到了满足。
2.尝试反向传播
利用上面的变量与函数之间的关系。进行反向传播计算。
先 y ---> b

y.grad = np.array(1.0)C = y.creator # 获取函数b = C.input # 获取函数的输入b.grad = C.backward(y.grad) # 调用函数的backward 方法
然后 b ---> a

B = b.creatorb = B.inputa.grad = B.backward(b.grad)
最后 a----> x

A = a.creatorx = A.inputx.grad = A.backward(a.grad)print(x.grad)
其实每一步的规律是:
1 获取函数
2 获取函数的输入
3 调用函数的 backward 方法
最后执行的结果为
3.29744
3.增加backward 方法
前面这些反向传播的代码可以看山,它们有着相同的处理流程准确 来说,是从一个变量到前一个变量的反向传播逻辑相同。
修改Variable 类,增加一个新的方法-backward
class Variable:def __init__(self, data):self.data = dataself.grad = Noneself.creator = Nonedef set_creator(self,func):self.creator = funcdef backward(self):f = self.creator # 获取函数if f is not None:x = f.input # 获取函数的输入x.grad =f.backward(self.grad) # 调用函数的backward() 方法x.backward() # 调用自己前面的那个变量的 backward()方法
4.项目代码
'''
step07.py
自动实现反向传播'''import numpy as npclass Variable:def __init__(self, data):self.data = dataself.grad = Noneself.creator = Nonedef set_creator(self,func):self.creator = funcdef backward(self):f = self.creator # 获取函数if f is not None:x = f.input # 获取函数的输入x.grad =f.backward(self.grad) # 调用函数的backward() 方法x.backward() # 调用自己前面的那个变量的 backward()方法class Function:def __call__(self, input):x = input.datay = self.forward(x)output = Variable(y)output.set_creator(self) # 输出者保存创造者对象self.input = inputself.output = output # 保存输出者。我是创造者的信息,这是动态建立 "连接"这 一 机制的核心return outputdef forward(self, x):raise NotImplementedError() # 使用Function 这个方法forward 方法的人 , 这个方法应该通过继承采实现def backward(self, gy):raise NotImplementedError()class Square(Function):def forward(self, x):y = x ** 2return ydef backward(self, gy):x= self.input.datagx = 2 * x * gy #方法的参数 gy 是 一个 ndarray 实例 , 它是从输出传播而来的导数 。return gxclass Exp(Function):def forward(self, x):y = np.exp(x)return ydef backward(self, gy):x = self.input.datagx = np.exp(x) * gyreturn gxif __name__ == '__main__':A = Square()B = Exp()C = Square()x = Variable(np.array(0.5))a = A(x)b = B(a)y = C(b)assert y.creator == Cassert y.creator.input == bassert y.creator.input.creator == Bassert y.creator.input.creator.input == aassert y.creator.input.creator.input.creator == Aassert y.creator.input.creator.input.creator.input == x# 反向传播y.grad = np.array(1.0)C = y.creator # 获取函数b = C.input # 获取函数的输入b.grad = C.backward(y.grad) # 调用函数的backward 方法B = b.creatorb = B.inputa.grad = B.backward(b.grad)A = a.creatorx = A.inputx.grad = A.backward(a.grad)print(x.grad)# 自动反向传播x = Variable(np.array(0.5))a = A(x)b = B(a)y = C(b)y.grad = np.array(1.0)y.back()print(x.grad)
5.总结
经过此小节的代码丰富,目前我们可以执行自动反向传播计算。
相关文章:
深度学习-07-反向传播的自动化
深度学习-07-反向传播的自动化 本文是《深度学习入门2-自製框架》 的学习笔记,记录自己学习心得,以及对重点知识的理解。如果内容对你有帮助,请支持正版,去购买正版书籍,支持正版书籍不仅是尊重作者的辛勤劳动…...
四川景源畅信:抖音做直播有哪些人气品类?
随着互联网科技的飞速发展,抖音作为新兴的社交媒体平台,已经成为了人们日常生活中不可或缺的一部分。而在抖音平台上,直播功能更是吸引了大量的用户和观众。那么,在抖音上做直播有哪些人气品类呢?接下来,就让我们一起…...
闲鱼无货源-高级班,最全·最新·最干,紧贴热点 深度学习(17节课)
课程目录 1-1:闲鱼潜规则_1.mp4 2-2:闲鱼的基础操作-养号篇_1.mp4 3-3:闲鱼实战运营-选品篇(一)_1.mp4 4-4:闲鱼实战运营-选图视频篇_1.mp4 5-5:闲鱼实战运营-标题筒_1.mp4 6-6࿱…...
力扣 739. 每日温度
题目来源:https://leetcode.cn/problems/daily-temperatures/description/ C题解:使用单调栈。栈里存放元素的索引,只要拿到索引就可以找到元素。 class Solution { public:vector<int> dailyTemperatures(vector<int>& tem…...
工业网关有效解决企业在数据采集、传输和整合方面的痛点问题-天拓四方
一、企业背景概述 随着信息技术的飞速发展,工业互联网已成为推动制造业转型升级的关键力量。在众多工业企业中,某公司凭借其深厚的技术积淀和广阔的市场布局,成为行业内的佼佼者。然而,在数字化转型的道路上,该公司也…...
金融壹账通的“新机遇” 用科技赋能助力金融机构做大做强“五篇大文章
金融强国、做好金融“五篇大文章”、发展新质生产力,正成为引导国内金融行业高质量发展的重要方向。 今年以来,越来越多银行保险机构为了做好金融“五篇大文章”,一面通过自主研发新科技,满足业务数字化需求,一面则积…...
Day 42 LVS四层负载均衡
一:负载均衡简介 1.集群是什么 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技术 …...
【源码】源码物品销售系统多种支付接口出售源码轻松赚钱
源码物品销售系统,多种支付接口,出售源码轻松赚钱。一款基于phpmysql开发的内容付费管理系统。系统支持多种收费方式,免签收款,三级分销,实名认证, 用户投稿/奖励,自动升级,佣金提现…...
图像操作的基石Numpy
OpenCV中用到的矩阵都要转换成Numpy数组 Numpy是一个经高度优化的Python数值库 创建矩阵 检索与赋值[y,x] 获取子数组[:,:] 一 创建数组array() anp.array([2,3,4]) cnp.array([1.0,2.0],[3.0,4.0]]) import numpy as npanp.array([1,2,3])bnp.array([[1,2,3],[4,5,6]])pr…...
如何利用exceljs将data数据导出表格实现日期去重,同时保留对应日期的每一列数据
const data [{ deviceId: 1, name: "B相电压", signalTypeId: 1, ts: "2024-05-13 12:10:06", unit: "kV", 1: 39.37936, value:39.37936, },{ deviceId: 1, name: "A相电压", signalTypeId: 2, ts: "2024-05-13 12:11:06"…...
[C#]使用C#部署yolov8-seg的实例分割的tensorrt模型
【测试通过环境】 win10 x64 vs2019 cuda11.7cudnn8.8.0 TensorRT-8.6.1.6 opencvsharp4.9.0 .NET Framework4.7.2 NVIDIA GeForce RTX 2070 Super 版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CShar…...
写个删除obj文件夹、bin文件夹的小工具
每次编译代码成功后都会生成obj/bin等文件夹。因此想清理这些文件夹,无奈工程数量较多,每个都要手动去删除比较累。就想到用代码写个小工具删除,当然也可以利用bat批处理删除。 using System; using System.Collections.Generic; using Syst…...
【多目标跟踪】《FlowMOT: 3D Multi-Object Tracking by Scene Flow Association》论文阅读笔记
0.论文 论文地址链接:https://arxiv.org/pdf/2012.07541v1 通过流的方式跟踪是一个比较新颖的点,所以这里比较关注运动跟踪,是如果做到流的跟踪来预测目标的位置以及ID绑定的。 FlowMOT的框架结构如下所示,本中会主要关注下运动跟踪、数据关联、ID分配、新生/消亡…...
python长方形周长面积 2024年3月青少年编程电子学会python编程等级考试二级真题解析
目录 python长方形周长面积 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python长方形周长面积 2024年3月 python编程等级考试级编程题 一、…...
C#WPF数字大屏项目实战02--主窗体布局
1、主窗体起始属性 设置有关属性如下: WindowStyle"None"-》无边框 AllowsTransparency"True" -》允许透明 WindowStartupLocation"CenterScreen"-》启动时位于屏幕中间 FontFamily"Microsoft YaHei"-》字体微软雅黑 …...
【STM32】STM32F103C6T6标准外设库
1、标准外设库获取 第一步,首先获取标准外设库,可以从官网进行下载。 https://www.st.com.cn/zh/embedded-software/stm32-standard-peripheral-libraries.html 根据自己的型号选择不同的系列,我这里选择是STM32F1系列 下载最新版本V3.6&a…...
【学习笔记】Windows GDI绘图(十一)Graphics详解(下)
文章目录 Graphics的方法Graphics.FromImageSetClip设置裁切区域IntersectClip更新为相交裁切区域TranslateClip平移裁切区域IsVisible判断点或矩形是否在裁切区域内MeasureCharacterRanges测量字符区域MeasureString测量文本大小MultiplyTransform矩阵变换 Graphics的方法 Gr…...
win10环境下nodejs安装过程
打开 https://nodejs.org/en/官网下载node.js 2.下载完成后的安装文件为node-v16.16.0-x64.msi,双击进行安装即可。 3.一直默认安装,记得可以更改安装路径 4.其他不用打勾,一直next,安装完成即可。 5.安装完成后,wi…...
亚信安慧AntDB:卓越的拓展性和灵活性
在当今这个信息爆炸的时代,企业对数据处理的需求不断增长,传统的数据库系统往往难以应对海量数据的存储和处理挑战。然而,随着亚信安慧AntDB的出现,解决这一难题的曙光终于出现在眼前。AntDB不仅仅具备了高吞吐、高并发、高性能的…...
【计算机毕设】基于SpringBoot的中小企业设备管理系统设计与实现 - 源码免费(私信领取)
免费领取源码 | 项目完整可运行 | v:chengn7890 诚招源码校园代理! 1. 研究目的 在中小企业中,设备管理是确保生产和运营效率的重要环节。传统的设备管理通常依赖于手工记录和人工管理,容易导致数据不准确、…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
