当前位置: 首页 > news >正文

基于STM32的位置速度环PID控制伺服电机转动位置及程序说明

PID控制原理

PID控制原理是一种广泛应用于工业自动化和其他领域的控制算法。PID控制器的名字来源于其三个主要组成部分:比例(Proportional)、积分(Integral)和微分(Derivative)。PID控制器实现的是输入信号和期望信号的零误差。比例控制就是对误差成比例放大,让输出信号按照线性规律接近期望值,比例控制的目的就是让输出值无限接近期望值;积分控制就是对误差随着时间的积分值按一定比例输出,让输出信号能够到达期望值,积分控制的目的就是让输出值在期望值附近振荡;微分控制就是对误差的变化按一定比例输出,微分控制的目的就是为了消除振荡,让输出信号保持稳定。完整的PID控制就是将比例控制的输出值、积分控制的输出值和微分控制的输出值加起来。让输出的信号等于期望信号,并保持稳定。

位置速度环PID原理

位置速度环控制如上图所示,输入信号是期望的目标位置,输出是电机的驱动信号,控制电机的旋转启停、旋转速度。通过旋转编码器作为传感器获取电机的转动情况,并经过一定的计算过程得到实际转轴的位置以及实际转轴的速度。

内环是速度环,内环的输入是速度误差,就是期望速度减去实际转轴速度,速度误差输入到速度PID控制器中经过计算得到输出值,该输出值就是对电机驱动信号的控制,电机的控制一般以PWM信号来控制,于是输出值就是PWM信号的占空比。

外环是位置环,上述内环中的期望速度其实就是外环的输出,是通过外环计算出来的而不是固定的,外环的输入是位置误差,就是期望位置减去实际转轴位置。外环的输入就是电机最终期望达到的位置。

内环和外环的关系有两点需要注意:第一点是内环的期望值,也就是输入,是外环PID计算后得到的输出;第二点是外环控制对象是内环控制对象的积分,这里外环的控制对象是实际转轴的位置,内环的控制对象是实际转轴的速度,它俩存在一个积分的关系。

代码解析

实践是检验真理的唯一标准。下面用实际使用过的代码来解释一下位置速度环PID的实现过程。

硬件方面,主控选择的是STM32单片机,电机驱动模块选择TB6612模块还有电机及编码器。软件方面,选择利用CubMX生成HAL库的工程,具体生成过程大同小异。

首先第一步是获取电机编码器的脉冲数,这里通过STM32内部的计数器实现。在总的定时器回调函数中,htim7是20ms的定时器,如下图所示,每20ms进入中断函数一次。

首先获取电机每20ms内电机编码器输出脉冲数。hitm3和htim8都设置为encoder mode,即定时器编码器模式,获取两个电机编码器的脉冲值。获取到的脉冲值用于计算实际转轴的位置和速度。

后再看总的位置速度环PID控制函数Location_Speed_control()。总的PID控制函数的关键部分包括位置环PID控制函数location_pid_control()和速度环PID控制函数speed_pid_control()。

有了实际速度之后,再通过速度环PID运算函数speed_pid_realize得到PID输出控制值。该函数通过一个结构体传递目标值、误差、上一个偏差值、PID系数以及积分值等参数,这些参数中,目标值是通过位置环PID运算函数计算得到的,PID系数是要提前设置好的。

速度环PID运算函数speed_pid_realize得到PID输出控制值其实就是PWM输出。如下图所示,speed_Outval和speed2outval就是速度环PID运算函数的计算结果,它们的值传入MotorOutput电机输出函数中。

在MotorOutput电机输出函数中,主要是判断方向以及限制PWM输出上限值。

最后我们再介绍一下位置环PID控制函数location_pid_control()。该函数也需要通过编码器脉冲数先获取电机转轴实际位置。

有了实际位置后,通过location_pid_realize函数调用位置PID结构体和实际位置计算得到目标速度,目标速度输出给速度环的输入,这样就完成闭环了。

其他说明

上述介绍的代码在电子设计竞赛中实际应用过,可以稳定运行,需要相关文件用于借鉴学习可以私聊。

相关文章:

基于STM32的位置速度环PID控制伺服电机转动位置及程序说明

PID控制原理 PID控制原理是一种广泛应用于工业自动化和其他领域的控制算法。PID控制器的名字来源于其三个主要组成部分:比例(Proportional)、积分(Integral)和微分(Derivative)。PID控制器实现…...

操作失败——后端

控制台观察,页面发送的保存菜品的请求 返回的response显示: ---------- 我开始查看明明感觉都挺正常,没啥错误,就是查不出来。结果后面电脑关机重启后,隔一天看,就突然可以了。我觉着可能是浏览器的缓存没…...

基于SSM的“学校访客登记系统”的设计与实现(源码+数据库+文档)

基于SSM的“学校访客登记系统”的设计与实现(源码数据库文档) 开发语言:Java 数据库:MySQL 技术:SSM 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 平台架构图 系统首页 校园公告信息界面 留言板管理界面 家庭来…...

linux配置IP、子网掩码、网关

linux虚拟机配置IP、子网掩码、网关 本方法适用于 Ubuntu 18.04 之后的版本。 例1: 配置信息: IP:10.100.100.23 子网掩码:255.255.255.240 网关:10.100.100.56 1、打开网络配置文件 01-network-manager-all.yaml sudo vi /etc/netplan/01-network-…...

Java 垃圾回收

文章目录 1 Java 垃圾回收1.1 JVM1.2 Java 对象生命周期 2 如何判断一个对象可被回收2.1 引用计数算法2.2 可达性分析算法 3 垃圾回收过程3.1 总体过程3.2 为什么要进行世代垃圾回收?3.3 分代垃圾回收过程 在 C 和 C 中,许多对象要求程序员声明他们后为其…...

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政线下预约等多场景应用支持H5+小程序+APP

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政按摩线下预约等多场景应用支持H5小程序APP 软件架构 前端:Uniapp-vue2.0 后端:Thinkphp6 前后端分离 前端支持: H5小程序双端APP(安卓苹果) 安装教程 【商业…...

书生·浦语大模型全链路开源体系-笔记作业2

全部写成了shell脚本,可以一键执行。 笔记: 1. 环境安装(InternStudio开发机) # 1. 创建conda环境 studio-conda -o internlm-base -t demo # 2. 激活conda环境 conda activate demo # 3. 安装额外的依赖 pip install huggingface-hub0.17.3 pip inst…...

手把手教你发布你的第一个npm插件包

在开源的世界里,npm(Node Package Manager)不仅是JavaScript生态中不可或缺的一部分,也是全球最大的软件注册表,它使得分享和复用代码变得异常简单。如果你有一个很棒的想法或者实用的功能想要封装成一个npm包供他人使…...

Docker-compose 编排lnmp(dockerfile) 完成Wordpress

一、部署 Nginx 镜像 1. 建立工作目录 mkdir /opt/lnmp/nginx -pcd /opt/lnmp/nginx#上传 nginx 安装包 nginx-1.12.0.tar.gz#上传 wordpress 服务包 wordpress-4.9.4-zh_CN.tar.gz mkdir /opt/lnmp/nginx/htmltar zxvf wordpress-4.9.4-zh_CN.tar.gz -C /opt/lnmp/nginx/html…...

秋招突击——算法打卡——5/28——复习{Z字形变换、两数之和}——新做:{整数反转、字符串转整数}

文章目录 复习Z字形变换实现代码参考代码 两数之和复习代码 新作整数反转个人实现实现代码 参考做法字符串转换整数个人解法 分析总结 复习 Z字形变换 实现代码 这里使用了他的思想,但是没有用他的代码,虽然已经比上次简洁了,但是还是不够&…...

PPT设置为本框的默认格式以及固定文本框

调整文本框固定位置 双击文本框之后勾选如下三个位置 设置文本框为默认 在调整好文本框的基本性质后,设置为默认即可...

计算机基础(5)——进制与进制转换

💗计算机基础系列文章💗 👉🍀计算机基础(1)——计算机的发展史🍀👉🍀计算机基础(2)——冯诺依曼体系结构🍀👉&#x1f34…...

发现情绪背后的真实心理需求,选择适合你的情绪调节方式

一、教程描述 心态对人的生活质量以及身体健康等多方面,都会产生非常重要的影响,受到不良情绪的影响,人的心态也会发生一定的变化。对于处于不良情绪状态的人来讲,应该重视学会调整自己的情绪。在心理学上,人的每种情…...

代理记账公司的五大问题及其解决方案

代理记账公司是现代企业管理中不可或缺的一部分,它为企业的日常运营提供了专业、高效的服务,随着行业的发展和竞争的加剧,代理记账公司的面临的问题也日益突出,这些问题主要表现在以下几个方面: 业务流程不规范 许多代…...

TH方程学习 (7)

一、内容介绍 TH存在广泛应用,在下面案例中,将介绍几种相对运动模型,斜滑接近模型,本节学习斜滑接近制导方法能够对接近时间、接近方向以及自主接近过程的相对速度进行控制。施加脉冲时刻追踪器的位置连线可构成一条直线&#xf…...

2024最新python入门教程|python安装|pycharm安装

前言:在安装PyCharm之前,首先需要明确PyCharm是一款功能强大的Python集成开发环境(IDE),由JetBrains公司开发。PyCharm旨在通过提供智能代码补全、语法高亮、代码检查、快速导航和重构等丰富的编码辅助工具&#xff0c…...

docker架构

docker架构 Docker daemon 是Docker最核心的后台进程,它负责响应来自Dockerclient的请求,然后将这此请求翻译成系统调用完成容器管理操作。该进程会在后台后启动一个APIServer,负责接收由 Dockerclient发送的请求;接收到的请求将通…...

使用Java进行网络采集:代理IP与参数传递详解

在Java编程语言中,参数传递机制是一个常见的讨论话题。理解这一点对于编写高效且无错误的Java代码至关重要。本文将探讨Java的参数传递机制,解析其究竟是“按引用传递”还是“按值传递”,并结合网络爬虫技术的实例,展示如何在实际…...

多功能光时域反射仪的工作原理

6426A-2101多功能光时域反射仪是新一代掌上型智能化光纤通信测量仪器,具有强大的功能和广泛的应用领域。它能够显示光纤及光缆的损耗分布曲线图,测量光纤及光缆的多种关键参数,包括长度、损耗、接续质量等,为光纤通信系统的工程施…...

目标检测数据集 - 海洋垃圾检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍:海洋垃圾检测数据集,真实拍摄海洋海底场景高质量垃圾检测图片数据,涉及场景丰富,比如海底塑料垃圾数据、海底铁制品罐状垃圾数据、海底纸张垃圾数据、海洋生物和海底垃圾同框数据、海底探索仪器和海底垃圾同框数据、海…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

Windows 下端口占用排查与释放全攻略

Windows 下端口占用排查与释放全攻略​ 在开发和运维过程中,经常会遇到端口被占用的问题(如 8080、3306 等常用端口)。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口,帮助你高效解决此类问题。​ 一、准…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译: ### 胃肠道癌症的发病率呈上升趋势,且有年轻化倾向(Bray等人,2018&#x…...

el-amap-bezier-curve运用及线弧度设置

文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 ‌el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。‌ 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...

基于django+vue的健身房管理系统-vue

开发语言:Python框架:djangoPython版本:python3.8数据库:mysql 5.7数据库工具:Navicat12开发软件:PyCharm 系统展示 会员信息管理 员工信息管理 会员卡类型管理 健身项目管理 会员卡管理 摘要 健身房管理…...

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

一、研究背景与创新点 (一)现有方法的局限性 当前智驾系统面临两大核心挑战:一是长尾问题,即系统在遇到新场景时可能失效,例如突发交通状况或非常规道路环境;二是可解释性问题,传统方法无法解释智驾系统的决策过程,用户难以理解车辆行为的依据。传统语言模型(如 BERT…...

AI书签管理工具开发全记录(十八):书签导入导出

文章目录 AI书签管理工具开发全记录(十八):书签导入导出1.前言 📝2.书签结构分析 📖3.书签示例 📑4.书签文件结构定义描述 🔣4.1. ​整体文档结构​​4.2. ​核心元素类型​​4.3. ​层级关系4.…...

循环神经网络(RNN):从理论到翻译

循环神经网络(RNN)是一种专为处理序列数据设计的神经网络,如时间序列、自然语言或语音。与传统的全连接神经网络不同,RNN具有"记忆"功能,通过循环传递信息,使其特别适合需要考虑上下文或顺序的任…...