当前位置: 首页 > news >正文

[leetcode hot 150]第一百零八题,将有序数组转换为二叉搜索树

题目:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 

平衡二叉搜索树。

 给定一个有序的整数数组,我们需要构建一棵平衡的二叉搜索树。平衡二叉树是指任意一个节点的左右子树的高度差不超过1。

由于给定的数组是有序的,可以利用这个特性来构建二叉搜索树。可以选择数组中间的元素作为根节点,然后递归地构建左子树和右子树。

 

public class no_108 {public static void main(String[] args) {int[] arr = {-10, -3, 0, 5, 9};TreeNode treeNode = sortedArrayToBST(arr);}public static TreeNode sortedArrayToBST(int[] nums) {return buildTree(nums, 0, nums.length - 1);}public static TreeNode buildTree(int[] nums, int left, int right) {if (left > right) return null;int mid = left + (right - left) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = buildTree(nums, left, mid - 1);root.right = buildTree(nums, mid + 1, right);return root;}
}

利用有序数组的特点,将树构建出来。

相关文章:

[leetcode hot 150]第一百零八题,将有序数组转换为二叉搜索树

题目:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡二叉搜索树。 给定一个有序的整数数组,我们需要构建一棵平衡的二叉搜索树。平衡二叉树是指任意一个节点的左右子树的高度差不超过1。 由于给定的数组是有序的…...

科普丨什么是数字孪生灌区(平台)?如何建设?有何好处?

在农业发展的新时代,数字孪生灌区的概念逐渐走进大众视野,成为推动农业现代化、提升粮食安全保障能力的关键力量。那么,究竟什么是数字孪生灌区?它又是如何建设的?又能为我们带来哪些好处呢? 数字孪生灌区…...

Python爬虫如何入门:一步步走向精通的指南

Python爬虫如何入门:一步步走向精通的指南 在信息爆炸的时代,爬虫技术已经成为获取、整理和分析数据的必备技能。Python,以其简洁易懂的语法和强大的库支持,成为了爬虫开发的热门语言。那么,如何入门Python爬虫呢&…...

Linux用户和用户组的操作

用户管理 以Tom做为用户名 以dev做为用户组 增加用户 sudo adduser Tom #不建议使用useradd/userdel系列的命令删除用户 sudo deluser Tom --remove-home # 删除Tom用户及home目录 重置密码 sudo passwd Tom加入用户组 sudo usermod -a -G dev Tom # sudo usermod -aG …...

git命令行分支(增删改查)

文章目录 一、创建分支并推送到远程仓库二、拉取指定分支代码三、删除分支 一、创建分支并推送到远程仓库 初始化git git init如果有远程仓库就进行克隆远程仓库 origin 表示远程仓库地址 git clone origin# 如果没有远程仓库 就进行创建一个远程仓库 git remote add origin ht…...

地理加权回归GWR简介

地理加权回归GWR简介 一、定义: 地理加权回归(Geographically Weighted Regression,简称GWR)是一种空间数据分析方法,专门用于处理空间异质性(spatial heterogeneity)问题。以下是对GWR的详细简…...

康谋技术 | 自动驾驶:揭秘高精度时间同步技术(一)

众所周知,在自动驾驶中,主要涵盖感知、规划、控制三个关键的技术层面。在感知层面,单一传感器采集外界信息,各有优劣,比如摄像头采集信息分辨率高,但是受外界条件影响较大,一般缺少深度信息&…...

客户端被攻击怎么办,为什么应用加速这么适合

随着科技的进步和互联网的普及,游戏行业也正在经历前所未有的变革。玩家们不再满足于传统的线下游戏,而是转向了线上游戏。然而,随着游戏的线上化,游戏安全问题也日益凸显。游戏受到攻击是游戏开发者永远的痛点,谈“D“…...

Introduction to HAL3

目录 HAL3 behavior Overview of HAL1 v.s HAL3 HAL3 behavior: HAL3 - detail: HAL3 operation and pipeline Framework Diagram Problem of current code Operation mode Full v.s limited Do: Don’t: Metadata Manual control – ISP control...

Vue02-搭建Vue的开发环境

一、Vue.js的安装 1-1、直接用 <script> 引入&#xff08;CDN&#xff09; 1、CDN的说明 2、Vue的版本说明 生产版本是开发版本的压缩。 3、Vue的引入 验证是否存在Vue函数&#xff1a; 4、搭建Vue的开发环境 ①、下载开发版本的Vue&#xff0c;并在代码中引入 ②、安…...

Python | 句子缩写

字符串大小的比较Unicode码值 类似于asc|| 码 小写字母从 a 到 z 对应的 Unicode 码值是从 97 到 122&#xff0c;而大写字母从 A 到 Z 对应的 Unicode 码值是从 65 到 90, 大小写字母之间的差值为32&#xff0c;所以可以通过数学运算将小写字符减去32后转换为大写字符。 字…...

STM32自己从零开始实操04:显示电路原理图

一、TFT-LCD 屏接口 1.1指路 以下是该部分的设计出来后的实物图&#xff0c;我觉得看到实物图可能更方便理解这部分的设计。 图1 实物图 这部分设计的是一个屏幕的接口&#xff0c;很简单。使用的屏幕是&#xff1a;2.8inch 16BIT Module MRB2801。 1.2数据手册 &#xff0…...

数分—AB测试

一、介绍 AB测试是一种常用于比较两种或多种不同版本的产品、服务或策略效果的实验方法。在AB测试中&#xff0c;被比较的版本被标记为A组和B组&#xff0c;然后两组被随机分配给不同的用户群体或实验对象。接着&#xff0c;针对每个组收集数据&#xff0c;比如用户行为、转化…...

基于全志T507-H的Igh EtherCAT主站案例分享

基于全志T507-H的Linux-RT IgH EtherCAT主站演示 下文主要介绍基于全志T507-H&#xff08;硬件平台&#xff1a;创龙科技TLT507-EVM评估板&#xff09;案例&#xff0c;按照创龙科技提供的案例用户手册进行操作得出测试结果。 本次演示的开发环境&#xff1a; Windows开发环…...

刷题记录(20240605)

1.数组构造 题目描述 小红的数组构造小红希望你构造一个数组满足以下条件: 1.数组共有 n个元素&#xff0c;且所有元素两两不相等。 2.所有元素的最大公约数等于 k。 3.所有元素之和尽可能小。请你输出数组元素之和的最小值。 输入描述: 两个正整数 n 和 k。 输出描述&#xff…...

CUDA和OpenGL纹理texture结合

cuda和OpenGL纹理结合,并进行直方图计算 针对于单通道16位图像。结合方式在CUDA_equalizeHistogram_16函数中。 其他的为CUDA核函数。 #define HISTOGRAM_LENGTH 65536 // 2^16 表示16位深度定义直方图长度为65536,对应16位像素值的范围(0-65535)。 __global__ void com…...

市场凌乱,智能算法哪种效果好?

当我们在面对市场波动&#xff0c;个股震荡&#xff0c;无从下手的时候&#xff0c;不懂算法的朋友就只懂做t&#xff1b;懂算法的朋友这会儿就迷茫并不知道选择哪种智能算法交易&#xff1f;今天小编给大家整理一套性价比高的&#xff0c;适合个人投资者搞的算法交易&#xff…...

学会这14大招,30天涨粉两三千没问题!沈阳新媒体运营培训

很多小白在刚转入公司做新媒体时&#xff0c;基本都是从帮助公司运营账号开始的。但不同于个人号&#xff0c;一个企业本身是没有ip属性的&#xff0c;它的风格、调性等&#xff0c;都需要通过你的运营&#xff0c;让它变成一个活灵活现的、赋予独立个性人设的账号。 目前&…...

SQL数据库性能优化

1.查询尽量避免使用select * 1.1 增加磁盘开销&#xff1a;数据库本质上是将记录存储在磁盘上&#xff0c;查询操作就是一种进行磁盘IO的行为,我们查询的字段越多&#xff0c;读取的内容也就越多&#xff0c;对IO磁盘的开销也就会增大&#xff0c;特别是某些字段&#xff0c;如…...

eNSP学习——RIP路由协议基础配置

目录 主要命令 原理概述 实验内容 实验目的 实验拓扑 实验编址 实验步骤 1、基本配置 2、使用RIPv1搭建网络 开启 RIP调试功能 3、使用RIPv2搭建网络 RIPv1和RIPv2的不同 需要eNSP各种配置命令的点击链接自取&#xff1a;华为&#xff45;NSP各种设备配置命令大全PD…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...