当前位置: 首页 > news >正文

利用 MLP(多层感知器)和 RBF(径向基函数)神经网络解决的近似和分类示例问题(Matlab代码实现)

       目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

1、径向基神经网络

径向基函数网络是由三层构成的前向网络:第一层为输入层,节点个数的能与输入的维数;第二层为隐含层,节点个数视问题的复杂度而定;第三层为输出层,节点个数等于输出数据的维数。由径向基函数的定义可知,函数值仅与自变量的范数有关。

2、多层感知器

多层感知器(MLP,Multilayer Perceptron)是一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输出的数据集上。

3、两者的异同

对于任意一个多层感知器,都存在一个可以替代它的径向基神经网络,反之,任意一个径向基神经网络,也存在一个多层感知器可以替代它。两者功能相近,但又有明显区别:

径向基神经网络是三层网络(输入层、隐含层、输出层),只有一个隐含层,而多层感知器则可以有多个隐含层。

径向基神经网络的隐含层和输出层完全不同,隐含层采用非线性函数(径向基函数)作为基函数,而输出层采用线性函数,两者作用不同。在多层感知器中,隐含层和输出层没有本质区别,一般都采用非线性函数。由于径向基函数网络输出的是线性加权和,因此学习速度更快。

径向基神经网络的基函数计算的是输入向量与基函数中心之间的欧氏距离(两者取差值,再取欧几里得范数),而多层感知器的隐单元的激励函数则计算输入向量与权值的内积。

多层感知器对非线性映射全局逼近,而径向基函数使用局部指数衰减的非线性函数进行局部逼近,因此,要达到相同的精度,径向基函数需要的参数比多层感知器少得多。

BP网络使用sigmoid函数作为激励函数,有很大的输入可见域。径向基函数网络引入RBF函数,当输入值偏离基函数中心时,输出逐渐减小,并很快趋于零。这一点比多层感知器更符合神经元响应基于感受域这一特点,比BP网络具有更深厚的理论基础。同时由于输入可见区域很小,径向基函数网络需要更多的径向基神经元。

📚2 运行结果

主函数部分代码:

% Program for  MLP..........................................

% Update weights for a given epoch

clear all;

close all;

clc;

weights = zeros(1,30,4);

weights_in = zeros(30,10,4);

errors = zeros(4,1);

for set=1:4

switch set    

% Set 1

case 1

    inp_rows = [251:1000];

    out_rows = [1:250];

% Set 2

case 2

    inp_rows = [1:250 501:1000];

    out_rows = [251:500];

% Set 3

case 3

    inp_rows = [1:500 751:1000];

    out_rows = [501:750];

% Set 4

case 4

    inp_rows = [1:750];

    out_rows = [751:1000];

end

% Load the training data..................................................

file=xlsread('fin_19.xlsx');

for i=1:11

   minval = min(file(:,i)) ;

   maxval = max(file(:,i));

   minmat = ones(size(file,1),1).*minval;

   maxmat = ones(size(file,1),1).*maxval;

   tp =ones(size(file,1),1);

   file(:,i)= ((file(:,i) - minmat) ./ (maxmat -minmat)).* 2 - tp ;

end

Ntrain = file(inp_rows,:);

[NTD,~] = size(Ntrain);

% Initialize the Algorithm Parameters.....................................

inp = 10;          % No. of input neurons

hid = 30;        % No. of hidden neurons

out = 1;            % No. of Output Neurons

lam = 0.0001;       % Learning rate

epo = 2000;

% Initialize the weights..................................................

Wi = 0.001*(rand(hid,inp)*2.0-1.0);  % Input weights

Wo = 0.001*(rand(out,hid)*2.0-1.0);  % Output weights

% Train the network.......................................................

for ep = 1 : epo

    sumerr = 0;

    DWi = zeros(hid,inp);

    DWo = zeros(out,hid);

    for sa = 1 : NTD

        xx = Ntrain(sa,1:inp)';     % Current Sample

        tt = Ntrain(sa,inp+1:end)'; % Current Target

        Yh = 1./(1+exp(-Wi*xx));    % Hidden output

        Yo = Wo*Yh;                 % Predicted output

        er = tt - Yo;               % Error

        DWo = DWo + lam * (er * Yh'); % update rule for output weight

        DWi = DWi + lam * ((Wo'*er).*Yh.*(1-Yh))*xx';    %update for input weight

        sumerr = sumerr + sum(er.^2);

    end

    Wi = Wi + DWi;

    Wo = Wo + DWo;

%    disp(sqrt(sumerr/(NTD)))

%     save -ascii Wi.dat Wi;

%     save -ascii Wo.d at Wo;

end

🎉3 参考文献

[1]张驰,郭媛,黎明.人工神经网络模型发展及应用综述[J].计算机工程与应用,2021,57(11):57-69.

👨‍💻4 Matlab代码

相关文章:

利用 MLP(多层感知器)和 RBF(径向基函数)神经网络解决的近似和分类示例问题(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 1、径向基神经网络 径向基函数网络是由三层构成的前向网络:第一层为输入层,节点个数的能与输入的维数&…...

进阶C语言——数据的存储【详解】

文章目录1. 数据类型介绍1.1 类型的基本归类2. 整形在内存中的存储2.1 原码、反码、补码2.2 大小端介绍2.3 练习3. 浮点型在内存中的存储3.1 一个例子3.2 浮点数存储的规则1. 数据类型介绍 前面我们已经学习了基本的内置类型: char //字符数据类型 short //短整型 …...

KUKA机器人修改机器人名称和IP地址的具体方法示例

KUKA机器人修改机器人名称和IP地址的具体方法示例 修改机器人名称 如下图所示,首先切换用户组到管理员,输入默认密码:kuka, 如下图所示,点击菜单键—投入运行—机器人数据, 如下图所示,此时可以看到机器人的名称为rrr445, 如下图所示,修改之后,点击左侧的“”…...

【数据分析师求职面试指南】必备基础知识整理

数据分析师基础知识统计 数据分析知识基础概念随机变量常用特征正态分布与大数定律、中心极限定律假设检验模型、数据挖掘知识常用概念数据集划分欠拟合过拟合模型分类方法常见模型介绍线性回归模型:逻辑回归模型决策树模型随机森林模型Boosting模型XGBoost模型模型…...

《开关电源宝典 降压电路(BUCK)的原理与应用》

嗨,硬件攻城狮或电源工程师同行们,我想写本专门解析BUCK电源电路的书籍,以下是“前言”内容的部分摘录以及当前的目录,当前已经完成22万多字500多页了,即使如此,离真正出版书籍,还有很长的路要走…...

R语言基础(一):注释、变量

R语言用于统计分析和绘制图表等操作。不同于Java等其它语言,R用于统计,而不是做一个网站或者软件,所以R的一些开发习惯和其它语言不同。如果你是一个编程小白,那么可以放心大胆的学。如果你是一个有编程基础的人,那么需…...

Java 集合进阶(二)

文章目录一、Set1. 概述2. 哈希值3. 元素唯一性4. 哈希表5. 遍历学生对象6. LinkedHashSet7. TreeSet7.1 自然排序7.2 比较器排序8. 不重复的随机数二、泛型1. 概述2. 泛型类3. 泛型方法4. 泛型接口5. 类型通配符6. 可变参数7. 可变参数的使用一、Set 1. 概述 Set 集合特点&am…...

小孩用什么样的台灯比较好?2023眼科医生青睐的儿童台灯推荐

小孩子属于眼睛比较脆弱的人群,所以选购护眼台灯时,选光线温和的比较好,而且调光、显色效果、色温、防蓝光等方面也要出色,否则容易导致孩子近视。 1、调光。台灯首先是照度高,国AA级+大功率发光&#xff0…...

Ubuntu c++ MySQL数据库操作

mysql安装sudo apt-get install updatesudo apt-get install mysql-server libmysqlclient-dev mysql-workbenchmysql启动/重启/停止sudo service mysql start/restart/stop登录mysql命令:mysql -uroot -p错误异常:解决办法:修改mysqld.cnf配…...

C++11:lambda表达式

文章目录1. 概念2. 语法3. 示例示例1示例2示例3示例44. 捕捉方式基本方式隐式和混合补充5. 传递lambda表达式示例6. 原理7. 内联属性1. 概念 lambda表达式实际上是一个匿名类的成员函数,该类由编译器为lambda创建,该函数被隐式地定义为内联。因此&#…...

【Android -- 开源库】表格 SmartTable 的基本使用

介绍 1. 功能 快速配置自动生成表格;自动计算表格宽高;表格列标题组合;表格固定左序列、顶部序列、第一行、列标题、统计行;自动统计,排序(自定义统计规则);表格图文、序列号、列标…...

自动化测试实战篇(9),jmeter常用断言方法,一文搞懂9种测试字段与JSON断言

Jmeter常用的断言主要有,JSON断言和响应断言这两种方式。 断言主要就是帮助帮助人工进行快速接口信息验证避免繁杂的重复的人工去验证数据 第一种响应断言Apply to:表示应用范围测试字段:针对响应数据进行不同的匹配响应文本响应代码响应信息…...

vue-virtual-scroll-list虚拟列表

当DOM中渲染的列表数据过多时,页面会非常卡顿,非常占用浏览器内存。可以使用虚拟列表来解决这个问题,即使有成百上千条数据,页面DOM元素始终控制在指定数量。 一、参考文档 https://www.npmjs.com/package/vue-virtual-scroll-li…...

C++学习笔记(以供复习查阅)

视频链接 代码讲义 提取密码: 62bb 文章目录1、C基础1.1 C初识(1) 第一个C程序(2)注释(3)变量(4)常量(5)关键字(6)标识符命名规则1.2 …...

备份时间缩短为原来 1/4,西安交大云数据中心的软件定义存储实践

XEDP 统一数据平台为西安交通大学云平台业务提供可靠的备份空间和强大的容灾能力,同时确保数据安全。西安交通大学(简称“西安交大”)是我国最早兴办、享誉海内外的著名高等学府,是教育部直属重点大学。学校现有兴庆、雁塔、曲江和…...

我国近视眼的人数已经超过了六亿,国老花眼人数超过三亿人

眼镜是一种用于矫正视力问题、改善视力、减轻眼睛疲劳的光学器件,在我们的生活中不可忽略的一部分,那么我国眼镜市场发展情况是怎样了?下面小编通过可视化互动平台对我国眼镜市场的状况进行分析。我国是一个近视眼高发的国家,据统…...

设计模式(十八)----行为型模式之策略模式

1、概述 先看下面的图片,我们去旅游选择出行模式有很多种,可以骑自行车、可以坐汽车、可以坐火车、可以坐飞机。 作为一个程序猿,开发需要选择一款开发工具,当然可以进行代码开发的工具有很多,可以选择Idea进行开发&a…...

VUE3入门基础:input元素的type属性值说明

说明 在Vue 3中&#xff0c;<input>元素的type属性可以设置不同的类型&#xff0c;以适应不同的输入需求。 常见的type属性取值如下&#xff1a; text&#xff1a;默认值&#xff0c;用于输入文本。password&#xff1a;用于输入密码&#xff0c;输入内容会被隐藏。em…...

关于供应链,一文教你全面了解什么是供应链

什么是供应链&#xff1f;供应链是指产品生产和流通过程中所涉及的原材料供应商、生产商、分销商、零售商以及最终消费者等成员通过与上游、下游成员的连接 (linkage) 组成的网络结构。也即是由物料获取、物料加工、并将成品送到用户手中这一过程所涉及的企业和企业部门组成的一…...

Scope作用域简单记录分析

类型 singleton 单例作用域 prototype 原型作用域 request web作用域,请求作用域,生命周期跟request相同,请求开始bean被创建,请求结束bean被销毁 session web作用域,会话作用域,会话开始bean被创建,会话结束bean被销毁 application web作用域,应用程序作用域,应用程序创建…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...