2.3操作系统-存储管理:页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则
2.3操作系统-存储管理:页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则
- 页式存储
- 逻辑地址、物理地址
- 如何判断物理地址和逻辑地址它们之间的地址关系?
- 页面大小与页内地址长度的关系
- 例题
- 总结
- 缺页中断
- 内存淘汰规则
在存储管理当中,操作系统会负责将外存的一些文件调入到内存当中,以便给CPU调用,如果调用的内容不在内存当中,那么会产生一种中断,叫做缺页中断。然后从外存调数据,调完数据再返回,接着访问之前的断点部分。
在调用的过程当中,如果是一个几十G的文件,调入到内存是一下放不进去的,如果是大型游戏,几百G,都放入内存显然是不可能的。
如果只调用一部分内容,是不是内存就恰好有足够大小的连续空间去放置呢?
太理想化了,这个可能性并不大。所以在存储管理当中,从外存调入数据到内存当中的时候,一般会把完整的内容切割之后,分散的进行放置,那么分割的方式不一样,会有不同的调用方式。
页式存储
分页存储管理,分页存储也就是页式存储的过程。它会将文件与内存都划分成相同大小的区域,这个区域我们叫做页,或者叫做块。
逻辑地址、物理地址
知道相应的页或块之后,我们只需要将页和内存当中对应的位置关系以一个表记录下来,就可以记录它们之间的映射关系。
这个表我们把它叫做页表,页表最基础的内容会包含在用户程序当中的页号,我们一般把它叫做逻辑页号,程序里面的地址叫做逻辑地址。
调入到内存之后,放到内存的什么位置呢?
我们把对应关系记录下来,我们叫做页帧号,或者物理块号,它在内存当中的地址我们称为物理地址。
对于物理地址和逻辑地址,我们一般会对应用程序根据逻辑地址查表,从而得到它的内存当中的物理地址,然后在实际的访问这个内容,整个过程当中,需要掌握逻辑地址和物理地址的转换关系。
如何判断物理地址和逻辑地址它们之间的地址关系?
我们所有的地址都会划分成两个部分,一个部分是在页内的具体地址,一个是在页外的出现的页号编号,这种编号与页号之间的关系类似于在寄快递的时候,先省市区,再是街道门牌号,较大的地址范围会放在高位上,细节的地址范围会放在低位上,一般低位我们把它叫做页内地址,它是在固定区域大小当,它所定义的一个偏移量,高位就是它对应的编号。
一个完整的地址,一般会用二进制,或者十六进制,有时候也会用十进制来表示,那么怎么确定哪里是页内地址,哪些是页号?
这个时候,会涉及到对页面大小的定义,如果页面存储系统当中,每个页的大小都是4KB,我们在回到主存编制的过程中,现在有一个页面大小的区域,总容量大小是4KB,在未知的情况下,默认按字节编组,也就是4KB/1B=4KB=4096个存储单元,可以表示的编号是0 ~ 4095,如果用比特位二进制来表示的话,则是000000000000 ~ 111111111111。
页面大小与页内地址长度的关系
可以总结下4KB的对应关系:4KB大小的页需要十二位二进制来表示212的不同的编码,对应4K个存储单元编号,对应4KB大小。依此类推,页面大小8KB,则页内地址长度为213。
有了这种对应关系之后,将相应的地址转换成二进制,数一数页内地址的长度(从右往左数),第一位是页内地址,剩余的高位就是页号。
例题
例如页式存储系统中,每个页的大小4KB。
逻辑地址:10 1100 1101 1110,求物理地址

4K个存储单元编号,对应4KB大小
逻辑地址:10 1100 1101 1110,因此从右往左数12位,还剩下左面的10,10所对应的十进制数是2,也就是页号为2,排除的12位是页内地址,是不变的,于是根据图中页表可知,块号为6,6转换为二进制是110
所以对应的物理地址:110 1100 1101 1110
总结
页的大小一般是以KB为单位的,相对来说,页面大小比较小。
在页式存储中,对于内存进行页面分配的时候,要么页面空闲,我们把它塞满,要么它已经占用了,一般可以利用到的碎片空间都可以利用,如果碎片空间小于页面大小,才不能够使用,所以在分配内存的时候,空闲的碎片一般会小于页面大小,空间利用率高,分配管理起来就比较简单。
但也正因为如此,页面太过于零碎,所以每次都需要查表去找相应的页面,这样增加了系统的开销;以页面位单位来进行调度的时候可能会产生抖动现象。所谓抖动现象就是给某一个进程分配3个页面,那它需要淘汰调用新页面的次数n,会小于给进程分配4个页面的情况,这种情况就是说明虽然系统增加了硬件设备,但是系统整体性能反而降低了,这个想想就叫做抖动。
高级程序语言使用逻辑地址,
运行状态,内存中使用物理地址。
逻辑地址=页号+页内地址
物理地址=页帧号+页内地址
优点:利用率高,碎片小,分配及管理简单
缺点:增加了系统开销;可能产生抖动现象
缺页中断
在调用的过程中,会给用户进程分配个别的一些内存页面来给它用,但是有限的页面肯定是不够用的,当想要访问某个用户程序页的时候,发现它并不在内存中,就会产生缺页中断。
内存淘汰规则
有缺页中断后,就需要把这个页面调用到内存当中,那么已经满了,要怎么调用?需要把内存已有的数据给剔除出去,这个剔除遵循下述规则:
页表相对来说比较复杂,还会记录相应的界面是否在内存的状态位,还有是否访问的访问位,是否修改的修改位。访问位会定时清零,也就是说,最近访问的最近是有时间限制的,如果超过了这个时间,没有再次被访问,则会认为近期不再会被访问,因此将访问位置为0。
修改位只要被修改过,就会置为1,不论过了多久。

上图只分配了2,3,5,6四个物理页,剩下的并没有使用,也就是说0,1,2,5号逻辑页已经在内存了,那么躲过现在想用3号逻辑页,怎么做?
需要经内存当中,已有的逻辑页淘汰一个,才能使用3
淘汰规则:
前提条件:状态位为1(0表示都不在内存,自然无法内存参与淘汰)
①访问位为0,(根据局部性原理来看,最近访问过的页面接下来很有可能用到,这种页面尽可能保留)
②访问位都为0,再优先淘汰修改位为0,(修改位为1,则开销成本会更大,如果刚把修改的页面费半天劲淘汰了,而且为了一致性原则,还同步了外存,但是立马又要修改,这种情况就很麻烦,所以一般是最后用完之后再去淘汰,可以避免不必要的开销和重复修改)
相关文章:
2.3操作系统-存储管理:页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则
2.3操作系统-存储管理:页式存储、逻辑地址、物理地址、物理地址逻辑地址之间的地址关系、页面大小与页内地址长度的关系、缺页中断、内存淘汰规则页式存储逻辑地址、物理地址如何判断物理地址和逻辑地址它们之间的地址关系?页面大小与页内地址长度的关系…...
设计模式3——结构型模式
结构型模式描述如何将类或对象按某种布局组成更大的结构,它分为类结构型和对象结构型模式,前者采用继承机制来组织接口和类,后者采用组合或聚合来组合对象。 由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”&…...
css——图片缩放,拉伸,变形的解决办法
你的图片即将变得超级丝滑图片为什么会拉伸变形?怎么解决?css的object-fit属性object-fit属性有什么用介绍一下object-position举个小栗子图片为什么会拉伸变形? 前端布局时,图片会出现拉伸、缩放和变形的原因可能有多种: 1.例如图…...
【工具使用】STM32CubeMX-基础使用篇
一、概述 无论是新手还是大佬,基于STM32单片机的开发,使用STM32CubeMX都是可以极大提升开发效率的,并且其界面化的开发,也大大降低了新手对STM32单片机的开发门槛。 本文主要面向初次接触STM32CubeMX的同学,大…...
面试题解-理解cookie、session和token
项目vuespringboot 1、token 用户填写密码账号发送至后端,由后端生成token,返回给前端,前端把它存放起来,如放在cookie或者localStorage里面 前端向服务器发起请求时在请求头携带token,判断用户身份给与反应。 //后…...
Buuctf [GUET-CTF2019]number_game 题解
目录 一.主函数逻辑 二.level_stor()函数 三.mid_stor函数 四.operate函数 五.judge2函数 六.求解flag 一.主函数逻辑 ①先输入一个字符串,然后judge1()函数遍历它,判断字符是否在[0,4]区间范围内 ②将输入的字符串用层次遍历的方式存储为一个二叉树root ③再将二叉树r…...
OsgEarth配置.earth文件支持wms服务
<!-- 参考 http://vmap0.tiles.osgeo.org/wms/vmap0?LAYERSbasic&SERVICEWMS&VERSION1.1.1&REQUESTGetMap&STYLES&FORMATimage%2Fjpeg&SRSEPSG%3A4326&BBOX-90,45,-45,90&WIDTH256&HEIGHT256 --> <!-- 可用 2023.03.09--> …...
【数据结构】详解空间复杂度
Yan英杰的博客 悟已往之不谏 知来者之可追 目录 空间复杂度 案例1:计算BubbleSort的空间复杂度? 案例2:计算斐波那契额数列的前N项的空间复杂度 案例3:计算阶乘递归Fac的空间复杂度? 案例4:F1和F2两函数是否使用的同一块空间 案例5:计算该…...
腾讯云GPU游戏服务器/云主机租用配置价格表
用于游戏业务的服务器和普通云服务器和主机空间是不同的,游戏服务器对于硬件的配置、网络带宽有更大的要求,一般游戏服务器根据不同的配置和适用场景会有十几元一小时到几十元一小时,而且可以根据不同的按量计费。而普通的云服务器可能需要几…...
配置临时SSL子域名泛化证书
配置临时SSL子域名泛化证书 三个月有效期第一步:访问SSL证书地址第二步:在华为云上/其他服务器上搜索DNS云解析服务类似的功能第三步:将SSL申请的信息添加到服务器的记录集中第四步:添加完信息进行保存获取key / crt第五步&#x…...
【Linux:环境变量的理解】
目录 1 Z(zombie)-僵尸进程 2 孤儿进程 3 环境变量 3.1 基本概念 3.2 测试HOME 3.3 和环境变量相关的命令 3.4 环境变量的组织方式 3.5 环境变量通常是具有全局属性的 在讲环境变量之前,我们先把上次遗留知识点给总结了(僵尸进程和孤儿进程&…...
python数据类型与数据结构
目录 一、数据类型 1.1变量与常量 1.1.1变量 1.1.2常量 1.2字符串类型 1.3整数与浮点数 1.4List列表 1.5 元组tuple 1.6字典dict 二、字符串格式化 三、数据输入和类型转换 四、简单列表习题练习 一、数据类型 变量类型: 整数int(4字节&#x…...
大数据自学学习技巧?
经常有人说:先别管大数据是什么,现在理解不了没关系,先开始学,等学着学着就明白了,这种学习路线基本是混合的,很难分清楚自己学了这段怎么用在以后项目中,所以会越学越迷茫,但是等你…...
Qt音视频开发22-音频播放QAudioOutput
一、前言 以前一直以为只有Qt5以后才有QAudioOutput播放音频,其实从Qt4.6开始就有,在Qt6中变成了QAudioSink,功能一样。用QAudioOutput播放音频pcm数据极其方便,只需要指定音频播放设备(可能电脑上有多个音频输出设备…...
JavaEE简单示例——Spring的入门程序
简单介绍: 在之前我们简单的介绍了有关于Spring的基础知识,那么现在我们就来一步步的把理论融入到实践中,开始使用这个框架,使用过程也是非常的简单,大致可以分为几个基础的步骤: 1.首先引入Spring的Mave…...
【嵌入式Bluetooth应用开发笔记】第一篇:DBUS概述与蓝牙开发小试牛刀
DBUS概述 DBus(D-Bus)是一个在不同程序之间传递消息的系统总线。DBus为不同的程序之间提供了一种通信机制,这种通信制可以在不需要知道对方程序的情况下进行通信。 DBus可以使用多种编程语言来开发,包括C、C、Python、Java等。在…...
如何在电脑更换新硬盘后迁移window11系统?2种迁移方法分享!
随着时间的流逝,数据量也在逐渐增多,就会导致您的硬盘空间也变得越来越小,因此系统运行速度可能会受到一些影响而越来越慢。为了摆脱这种情况,您可以选择升级到更大的硬盘来使计算机获取更大的磁盘空间,或者迁移系统到…...
6、Elasticsearch优化
一、Elasticsearch集群配置 1、硬件选择 Elasticsearch的基础是 Lucene ,所有的索引和文档数据是存储在本地的磁盘中, 具体的路径可在 ES 的配置文件 ../config/elasticsearch.yml 中配置,如下:磁盘在现代服务器上通常都是瓶颈。…...
给力|这是一个专业的开源快速开发框架!
在低代码开发市场,专业的开源快速开发框架可以助力企业提升办公协作效率,实现提质增效的办公自动化的发展目标。 流辰信息低代码技术开发平台服务商,拥有丰富的技术经验和案例合作经验,针对不同的客户需求,提供个性化、…...
CIMCAI smart shipping company product container damage identify
世界港航人工智能领军者企业CIMCAI,领先智能航运船公司集装箱管理产品ceaspectusS™全球规模化应用落地智能化航运,全球前三船公司认可验箱标准应用。全球港航人工智能领军者企业CIMCAI,是全球第一家完成两百万次人工智能验箱,上亿…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
