当前位置: 首页 > news >正文

【深度学习】温故而知新4-手写体识别-多层感知机+CNN网络-完整代码-可运行

多层感知机版本

import torch
import torch.nn as nn
import numpy as np
import torch.utils
from torch.utils.data import DataLoader, Dataset
import torchvision
from torchvision import transforms
import matplotlib.pyplot as plt
import matplotlib
import os
# 前置配置:
matplotlib.use('Agg')
class Config():base_dir = os.path.dirname(os.path.abspath(__file__))device = "cuda" if torch.cuda.is_available() else "cpu"# 超参配置: batch_size=128lr=0.0001
# 数据集初步加工
train_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=True,download=False,transform=transforms.ToTensor())
test_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=False,download=False,transform=transforms.ToTensor())
# 生成dataLoader
train_dl = DataLoader(train_ds,batch_size=Config.batch_size,shuffle=True)
test_dl = DataLoader(test_ds,batch_size=Config.batch_size)def show_pic_and_label():# 查看dataloaderprint(len(train_dl.dataset))# 查看 它的img 和 labelimgs, labels = next(iter(train_dl))# print(imgs, labels)sample_img = imgs[0:10]sample_label = labels[0:10]print(sample_img,sample_label)for idx,npimg in enumerate(sample_img,1):# plt.subplot()# 也可以挤一挤npimg = npimg.squeeze()# npimg = npimg.reshape(28,28)plt.subplot(1,10,idx)plt.imshow(npimg)plt.axis('off')plt.savefig(os.path.join(Config.base_dir,"1.jpg"))print(sample_label)
# 构建模型 
class Model(nn.Module):def __init__(self):super().__init__()# 第一层 28*28, 120self.liner1 = nn.Linear(28*28,120)# 第二层 输出84self.liner2 = nn.Linear(120, 84)# 第三层 输出10self.liner3 = nn.Linear(84,10)def forward(self, input):x = input.view(-1,28*28)# @todo 这里踩坑了,不是nn.ReLU, 而是torch.ReLux = torch.relu(self.liner1(x))x = torch.relu(self.liner2(x))x = self.liner3(x)return xmodel = Model().to(Config.device)
# print(model)
optim = torch.optim.Adam(model.parameters(), lr = Config.lr)loss_fn = nn.CrossEntropyLoss()def model_test():"""确认输入输出是没问题的。"""res = model(torch.randn(10,28*28).to(Config.device))print(res.shape)print(res)
def accuracy(y_pred,y_true):y_pred = (torch.argmax(y_pred,dim=1) == y_true).type(torch.int64)return y_pred.sum()
# 编写训练过程
def train(dataloader, model, loss_fn, optimizer):total_row_count = len(dataloader.dataset)total_batch_count = len(dataloader)total_acc = 0total_loss = 0for X,y in dataloader:X,y = X.to(Config.device),y.to(Config.device)y_pred = model(X)acc = accuracy(y_pred,y)loss = loss_fn(y_pred,y)optimizer.zero_grad()loss.backward()optimizer.step()with torch.no_grad():total_acc+=acctotal_loss+=losstotal_acc = total_acc/total_row_counttotal_loss = total_loss/total_batch_countreturn total_loss, total_acc# 编写测试过程
def test(dataloader, model, loss_fn):total_row_count = len(dataloader.dataset)total_batch_count = len(dataloader)total_acc = 0total_loss = 0with torch.no_grad():for X,y in dataloader:X,y = X.to(Config.device),y.to(Config.device)y_pred = model(X)acc = accuracy(y_pred,y)loss = loss_fn(y_pred,y)total_acc+=acctotal_loss+=losstotal_acc = total_acc/total_row_counttotal_loss = total_loss/total_batch_countreturn total_loss, total_accepochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):epoch_loss, epoch_acc = train(train_dl,model,loss_fn,optim)epoch_test_loss, epoch_test_acc = test(test_dl,model,loss_fn)template = "epoch:{:2d}, train_loss:{:.5f}, train_acc:{:.1f}%, test_loss:{:.5f},test_acc:{:.1f}%"print(template.format(epoch, epoch_loss.data.item(), epoch_acc.data.item()*100, epoch_test_loss.data.item(), epoch_test_acc.data.item()*100))#print(epoch, epoch_loss.data.item(),epoch_acc.data.item(),epoch_test_loss.data.item(),epoch_test_acc.data.item())
if __name__ == "__main__":# model_test()pass# y_pred = torch.tensor([#     [1,2,3],#     [2,1,3],#     [3,2,1],#     ])# y_true = torch.tensor([2,0,1])# res = accuracy(y_pred,y_true)# print(res)
(pytorchbook) (base) justin@justin-System-Product-Name:~/Desktop/code/python_project/mypaper$ /home/justin/miniconda3/envs/pytorchbook/bin/python /home/justin/Desktop/code/python_project/mypaper/pytorchbook/chapter4/手写体识别.py
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
epoch: 1, train_loss:0.39913, train_acc:89.5%, test_loss:0.33029,test_acc:91.0%
epoch: 2, train_loss:0.31837, train_acc:91.1%, test_loss:0.28821,test_acc:91.8%
epoch: 3, train_loss:0.28331, train_acc:92.0%, test_loss:0.26157,test_acc:92.5%
epoch: 4, train_loss:0.26049, train_acc:92.5%, test_loss:0.24704,test_acc:93.1%
epoch: 5, train_loss:0.24122, train_acc:93.1%, test_loss:0.22766,test_acc:93.4%
epoch: 6, train_loss:0.22516, train_acc:93.6%, test_loss:0.21446,test_acc:93.7%
epoch: 7, train_loss:0.21048, train_acc:94.0%, test_loss:0.20211,test_acc:94.2%
epoch: 8, train_loss:0.19786, train_acc:94.4%, test_loss:0.19200,test_acc:94.5%
epoch: 9, train_loss:0.18692, train_acc:94.6%, test_loss:0.18458,test_acc:94.7%
epoch:10, train_loss:0.17689, train_acc:95.0%, test_loss:0.17440,test_acc:94.9%
epoch:11, train_loss:0.16766, train_acc:95.2%, test_loss:0.16584,test_acc:95.0%
epoch:12, train_loss:0.15932, train_acc:95.5%, test_loss:0.16011,test_acc:95.3%
epoch:13, train_loss:0.15149, train_acc:95.7%, test_loss:0.15269,test_acc:95.5%
epoch:14, train_loss:0.14443, train_acc:95.9%, test_loss:0.14685,test_acc:95.5%
epoch:15, train_loss:0.13801, train_acc:96.0%, test_loss:0.14179,test_acc:95.7%
epoch:16, train_loss:0.13172, train_acc:96.2%, test_loss:0.13724,test_acc:95.8%
epoch:17, train_loss:0.12594, train_acc:96.3%, test_loss:0.13256,test_acc:96.1%
epoch:18, train_loss:0.12016, train_acc:96.5%, test_loss:0.13012,test_acc:96.1%
epoch:19, train_loss:0.11557, train_acc:96.7%, test_loss:0.12416,test_acc:96.2%
epoch:20, train_loss:0.11037, train_acc:96.8%, test_loss:0.12220,test_acc:96.4%
epoch:21, train_loss:0.10601, train_acc:97.0%, test_loss:0.11851,test_acc:96.5%
epoch:22, train_loss:0.10160, train_acc:97.1%, test_loss:0.11445,test_acc:96.6%
epoch:23, train_loss:0.09774, train_acc:97.2%, test_loss:0.11242,test_acc:96.5%
epoch:24, train_loss:0.09388, train_acc:97.3%, test_loss:0.10876,test_acc:96.6%
epoch:25, train_loss:0.09008, train_acc:97.4%, test_loss:0.10713,test_acc:96.7%
epoch:26, train_loss:0.08692, train_acc:97.5%, test_loss:0.10526,test_acc:96.7%
epoch:27, train_loss:0.08370, train_acc:97.6%, test_loss:0.10490,test_acc:96.8%
epoch:28, train_loss:0.08067, train_acc:97.7%, test_loss:0.10183,test_acc:96.8%
epoch:29, train_loss:0.07805, train_acc:97.7%, test_loss:0.10172,test_acc:96.9%
epoch:30, train_loss:0.07480, train_acc:97.8%, test_loss:0.09779,test_acc:97.0%
epoch:31, train_loss:0.07235, train_acc:97.8%, test_loss:0.09650,test_acc:97.0%
epoch:32, train_loss:0.06958, train_acc:98.0%, test_loss:0.09472,test_acc:97.1%
epoch:33, train_loss:0.06747, train_acc:98.0%, test_loss:0.09349,test_acc:97.1%
epoch:34, train_loss:0.06504, train_acc:98.1%, test_loss:0.09270,test_acc:97.1%
epoch:35, train_loss:0.06236, train_acc:98.2%, test_loss:0.09221,test_acc:97.2%
epoch:36, train_loss:0.06039, train_acc:98.3%, test_loss:0.09187,test_acc:97.2%
epoch:37, train_loss:0.05850, train_acc:98.3%, test_loss:0.08917,test_acc:97.3%
epoch:38, train_loss:0.05624, train_acc:98.4%, test_loss:0.08657,test_acc:97.3%
epoch:39, train_loss:0.05456, train_acc:98.4%, test_loss:0.08722,test_acc:97.4%
epoch:40, train_loss:0.05246, train_acc:98.5%, test_loss:0.08660,test_acc:97.4%
epoch:41, train_loss:0.05088, train_acc:98.5%, test_loss:0.08511,test_acc:97.4%
epoch:42, train_loss:0.04919, train_acc:98.6%, test_loss:0.08628,test_acc:97.4%
epoch:43, train_loss:0.04726, train_acc:98.7%, test_loss:0.08620,test_acc:97.4%
epoch:44, train_loss:0.04571, train_acc:98.7%, test_loss:0.08298,test_acc:97.5%
epoch:45, train_loss:0.04408, train_acc:98.8%, test_loss:0.08309,test_acc:97.5%
epoch:46, train_loss:0.04274, train_acc:98.8%, test_loss:0.08241,test_acc:97.5%
epoch:47, train_loss:0.04122, train_acc:98.9%, test_loss:0.08229,test_acc:97.6%
epoch:48, train_loss:0.03967, train_acc:98.9%, test_loss:0.08120,test_acc:97.6%
epoch:49, train_loss:0.03829, train_acc:99.0%, test_loss:0.08134,test_acc:97.5%

问题1:
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
为什么第一轮训练train_acc要比test_acc掉点不少,是因为第一轮,是刚开始,train按批次比完了,才会到test。因此test是高
那么为什么其它轮,又是test比train低呢?
因为即使train是按批次的,但仍然有可能过拟合,契合的好。所以test是比不过的。

在这里插入图片描述
在这里插入图片描述

CNN版本

只需要将model换一下,其它的毛也不需要动

class Model(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8# 池化 16X4X4 self.liner_1 = nn.Linear(16*4*4,256)self.liner_2 = nn.Linear(256,10)def forward(self,input):x = torch.max_pool2d(torch.relu(self.conv1(input)),2)x = torch.max_pool2d(torch.relu(self.conv2(x)),2)# 展平层x = x.view(-1, 16*4*4)x = torch.relu(self.liner_1(x))x = self.liner_2(x)return x# 这里是在学习一种调试的方式
class _Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)def forward(self, input):a1 = self.conv1(input)a2 = F.max_pool2d(a1,2)a3 = self.conv2(a2)a4 = F.max_pool2d(a3,2)# print()
epoch: 0, train_loss:1.13144, train_acc:74.3%, test_loss:0.36698,test_acc:90.6%
epoch: 1, train_loss:0.30213, train_acc:91.6%, test_loss:0.22672,test_acc:93.5%
epoch: 2, train_loss:0.21874, train_acc:93.7%, test_loss:0.17848,test_acc:94.9%
epoch: 3, train_loss:0.17849, train_acc:94.8%, test_loss:0.14941,test_acc:95.4%
epoch: 4, train_loss:0.15203, train_acc:95.5%, test_loss:0.12645,test_acc:96.2%
epoch: 5, train_loss:0.13339, train_acc:96.1%, test_loss:0.11351,test_acc:96.5%
epoch: 6, train_loss:0.11952, train_acc:96.5%, test_loss:0.09954,test_acc:96.9%
epoch: 7, train_loss:0.10876, train_acc:96.7%, test_loss:0.09198,test_acc:97.3%
epoch: 8, train_loss:0.09943, train_acc:97.1%, test_loss:0.08412,test_acc:97.3%
epoch: 9, train_loss:0.09255, train_acc:97.2%, test_loss:0.07788,test_acc:97.6%
epoch:10, train_loss:0.08576, train_acc:97.4%, test_loss:0.07551,test_acc:97.6%
epoch:11, train_loss:0.08089, train_acc:97.5%, test_loss:0.06757,test_acc:97.9%
epoch:12, train_loss:0.07635, train_acc:97.7%, test_loss:0.06399,test_acc:98.0%
epoch:13, train_loss:0.07175, train_acc:97.8%, test_loss:0.05942,test_acc:98.1%
epoch:14, train_loss:0.06862, train_acc:97.9%, test_loss:0.05657,test_acc:98.2%
epoch:15, train_loss:0.06509, train_acc:98.0%, test_loss:0.05776,test_acc:98.1%
epoch:16, train_loss:0.06273, train_acc:98.1%, test_loss:0.05381,test_acc:98.3%
epoch:17, train_loss:0.05940, train_acc:98.2%, test_loss:0.05134,test_acc:98.4%
epoch:18, train_loss:0.05681, train_acc:98.3%, test_loss:0.05330,test_acc:98.2%
epoch:19, train_loss:0.05434, train_acc:98.4%, test_loss:0.04689,test_acc:98.6%
epoch:20, train_loss:0.05175, train_acc:98.5%, test_loss:0.04500,test_acc:98.6%
epoch:21, train_loss:0.05027, train_acc:98.6%, test_loss:0.04645,test_acc:98.5%
epoch:22, train_loss:0.04849, train_acc:98.6%, test_loss:0.04274,test_acc:98.7%
epoch:23, train_loss:0.04600, train_acc:98.6%, test_loss:0.04739,test_acc:98.5%
epoch:24, train_loss:0.04449, train_acc:98.7%, test_loss:0.04360,test_acc:98.7%
epoch:25, train_loss:0.04359, train_acc:98.7%, test_loss:0.04198,test_acc:98.7%
epoch:26, train_loss:0.04115, train_acc:98.8%, test_loss:0.04209,test_acc:98.7%
epoch:27, train_loss:0.03978, train_acc:98.8%, test_loss:0.04147,test_acc:98.7%
epoch:28, train_loss:0.03866, train_acc:98.9%, test_loss:0.03845,test_acc:98.8%
epoch:29, train_loss:0.03721, train_acc:98.9%, test_loss:0.04142,test_acc:98.7%
epoch:30, train_loss:0.03632, train_acc:98.9%, test_loss:0.03916,test_acc:98.8%
epoch:31, train_loss:0.03525, train_acc:98.9%, test_loss:0.04137,test_acc:98.7%
epoch:32, train_loss:0.03364, train_acc:99.0%, test_loss:0.03829,test_acc:98.8%
epoch:33, train_loss:0.03323, train_acc:99.0%, test_loss:0.04090,test_acc:98.7%
epoch:34, train_loss:0.03179, train_acc:99.0%, test_loss:0.03660,test_acc:98.9%
epoch:35, train_loss:0.03125, train_acc:99.1%, test_loss:0.03698,test_acc:98.9%
epoch:36, train_loss:0.03009, train_acc:99.1%, test_loss:0.03624,test_acc:98.8%
epoch:37, train_loss:0.02958, train_acc:99.1%, test_loss:0.03525,test_acc:98.9%
epoch:38, train_loss:0.02902, train_acc:99.1%, test_loss:0.03705,test_acc:98.9%
epoch:39, train_loss:0.02789, train_acc:99.2%, test_loss:0.03579,test_acc:98.9%
epoch:40, train_loss:0.02741, train_acc:99.2%, test_loss:0.03896,test_acc:98.9%
epoch:41, train_loss:0.02604, train_acc:99.2%, test_loss:0.03572,test_acc:98.9%
epoch:42, train_loss:0.02518, train_acc:99.2%, test_loss:0.03741,test_acc:98.7%
epoch:43, train_loss:0.02471, train_acc:99.3%, test_loss:0.03319,test_acc:98.9%
epoch:44, train_loss:0.02413, train_acc:99.3%, test_loss:0.03753,test_acc:98.8%
epoch:45, train_loss:0.02340, train_acc:99.3%, test_loss:0.03333,test_acc:98.9%
epoch:46, train_loss:0.02272, train_acc:99.3%, test_loss:0.03303,test_acc:99.0%
epoch:47, train_loss:0.02188, train_acc:99.3%, test_loss:0.03451,test_acc:98.9%
epoch:48, train_loss:0.02169, train_acc:99.4%, test_loss:0.03433,test_acc:98.9%
epoch:49, train_loss:0.02068, train_acc:99.4%, test_loss:0.03331,test_acc:98.9%

对比一下 cnn的到了98.9,而mlp的只有97.x

函数式API的调用方式

import torch.nn.functional as F
# 这里是在学习一种调试的方式
class _Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)def forward(self, input):a1 = self.conv1(input)a2 = F.max_pool2d(a1,2)a3 = self.conv2(a2)a4 = F.max_pool2d(a3,2)# print()class Model1(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8# 池化 16X4X4 self.liner_1 = nn.Linear(16*4*4,256)self.liner_2 = nn.Linear(256,10)def forward(self,input):x = F.max_pool2d(F.relu(self.conv1(input)),2)x = F.max_pool2d(F.relu(self.conv2(x)),2)# 展平层x = x.view(-1, 16*4*4)x = F.relu(self.liner_1(x))x = self.liner_2(x)return x   

相关文章:

【深度学习】温故而知新4-手写体识别-多层感知机+CNN网络-完整代码-可运行

多层感知机版本 import torch import torch.nn as nn import numpy as np import torch.utils from torch.utils.data import DataLoader, Dataset import torchvision from torchvision import transforms import matplotlib.pyplot as plt import matplotlib import os # 前…...

ChatGPT 论文翻译指南!解锁高质量翻译的秘密!

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …...

SQLserver通过CLR调用TCP接口

一、SQLserver启用CLR 查看是否开启CRL,如果run_value1,则表示开启 EXEC sp_configure clr enabled; GO RECONFIGURE; GO如果未启用,则执行如下命令启用CLR sp_configure clr enabled, 1; GO RECONFIGURE; GO二、创建 CLR 程序集 创建新项…...

前复权、后复权,技术分析看哪个?价值投资呢?

先说结论, 前复权可以实现技术指标的连续性,适合技术分析, 后复权可以实现股价走势的连续性,适合价值投资者 ​ 从头来说,一家公司盈利后,可以选择用盈利购买新的生产设备或者拓展生产,但是…...

Python正则表达式:深度解析URL匹配与操作

Python正则表达式:深度解析URL匹配与操作 在Python编程中,正则表达式(Regular Expression,简称regex或regexp)是一种强大的文本处理工具,它可以帮助我们快速匹配、查找、替换复杂的文本模式。在处理URL&am…...

[C][数据结构][顺序表]详细讲解+实现

目录 1.线性表2.顺序表 - SeqList3.实现4.顺序表缺点 1.线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串…线性表在逻辑上是线性结构&#xff0…...

vscode运行Java utf-8文件中文乱码报错

问题现象 vscode 运行utf-8 java文,爆出如下错误 hello.java:5: ����: ����GBK�IJ���ӳ���ַ&a…...

Mybatis杂记

group by查询返回map类型 1,2 List<Map<String, Object>> getCount();xml: <select id"getCount" resultType"java.util.HashMap">SELECT company_id, ifnull(sum(count_a count_b),0) ctFROM test.com_countWHERE is_del 0 GROUP BY…...

修改缓存供应商--EhCache

除了我们默认的缓存形式simlpe之外, 我们其实还有许多其他种类的缓存供应 Ehcache就是其中的一种形式 Ehcache在SpringBoot当中的使用: 其实跟我们之前整合第三方的资源是一样的形式 1>导入依赖: <!-- 更换缓存, 将默认使用的 Simple 更换为Ehcache--> <depe…...

20240606更新Toybrick的TB-RK3588开发板在Android12下的内核

20240606更新Toybrick的TB-RK3588开发板在Android12下的内核 2024/6/6 10:51 0、整体编译&#xff1a; 1、cat android12-rk-outside.tar.gz* | tar -xzv 2、cd android12 3、. build/envsetup.sh 4、lunch rk3588_s-userdebug 5、./build.sh -AUCKu -d rk3588-toybrick-x0-a…...

x264 参考帧管理源码分析

x264参考帧管理 在x264中,参考帧的管理是一个重要的组成部分,因为它涉及到视频编码过程中的帧间预测。以下是关于x264参考帧管理的一些关键点: 参考帧的分类:在x264中,帧可以分为几类,包括参考帧、当前编码帧和未使用帧等。 参考帧的作用:参考帧用于帧间预测,通过比较当…...

大语言模型应用与传统程序的不同

大语言模型&#xff08;LLM&#xff09; 被描述的神乎其神&#xff0c;无所不能&#xff0c;其实&#xff0c;大语言模型只是一个模型&#xff0c;它能够理解和生成自然语言&#xff0c;唯有依靠应用程序才能够发挥作用。例如&#xff0c;基于大模型可以构建一个最简单的会话机…...

MySQL换路径(文件夹)

#MySQL作为免费数据库很受欢迎&#xff0c;即使公司没有使用&#xff0c;自己也可以用。它是一个服务&#xff0c;在点击CtrlAltDelete选择任务管理器后&#xff0c;它在服务那个归类里。 经常整理计算机磁盘分类的小伙伴&#xff0c;如果你们安装了MySQL&#xff0c;并且想移…...

企业诚信管理:构建顾客忠诚的高性价比之道

在当今竞争激烈的市场环境中&#xff0c;企业若想脱颖而出&#xff0c;赢得顾客的长期青睐&#xff0c;必须找到一种高效且高性价比的策略来维系顾客忠诚。售后服务作为这种策略的核心&#xff0c;不仅解决了顾客在购买后的各种问题&#xff0c;还在无形中提升了顾客对品牌的信…...

如何利用pandas解析html的表格数据

如何利用pandas解析html的表格数据 我们在编写爬虫的过程中&#xff0c;经常使用的就是parsel、bs4、pyquery等解析库。在博主的工作中经常的需要解析表格形式的html页面&#xff0c;常规的写法是&#xff0c;解析table表格th作为表头&#xff0c;解析td标签作为表格的行数据 …...

hadoop疑难问题解决_NoClassDefFoundError: org/apache/hadoop/fs/adl/AdlFileSystem

1、问题描述 impala执行查询&#xff1a;select * from stmta_raw limit 10; 报错信息如下&#xff1a; Query: select * from sfmta_raw limit 10 Query submitted at: 2018-04-11 14:46:29 (Coordinator: http://mrj001:25000) ERROR: AnalysisException: Failed to load …...

文件传输基础——Java IO流

系列文章目录 文章目录 系列文章目录前言一、文件的编码二、File类的使用三、RandomAccessFile类的使用 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用…...

Mysql时间操作

一、MySql时间戳转换 select unix_timestamp(); #获取时间戳格式时间 select FROM_UNIXTIME(1717399499); #将时间戳转换为普通格式时间二、Mysql时间相加减结果转换为秒 方法1&#xff1a;time_to_sec(timediff(endTime, startTime)) SELECTDISTINCT(column1),min(last_mo…...

Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:无人机自主飞行软件平台

案例简介 北京泛化智能科技有限公司&#xff08;gi&#xff09;所主导开发的 Generalized Autonomy Aviation System (GAAS) 是为无人机以及城市空中交通 (UAM, Urban Air Mobility) 所设计的开源无人机自主飞行框架。通过 SLAM、路径规划和 Global Optimization Graph 等功能…...

weak的底层原理

weak 引用在 iOS 中通过维护一个全局的弱引用表来实现。当弱引用的对象被释放时&#xff0c;所有指向它的弱引用会被自动置为 nil&#xff0c;从而防止悬挂指针。 弱引用表&#xff08;Weak Table&#xff09;的键和值 理解弱引用表的键和值对于理解 weak 引用的底层机制非常重…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...