当前位置: 首页 > news >正文

线性模型-分类

一、线性判别分析LDA

线性判别分析是一种经典的线性学习方法,在二分类问题上最早是Fisher提出的,亦称为Fisher判别分析。

Fisher判别分析是一种用于降维和分类的统计方法,旨在找到可以最好区分不同类别的特征。它基于类内方差和类间方差的比值来选择最佳的投影方向,从而实现数据的最佳分类

思想:将训练集的样本投影到一条直线上,使得正类和反类投影在直线上的距离尽可能的分开。当测试集的样本被投影到直线上的时候,通过观察他的位置就可以知道该测试集的样本属于哪一类。

示意图

"+ "、 "-  "分别代表正 例和反例,椭圆表 示数据 簇的 外轮 廓,虚 线表示投 影, 红色实心圆和实心三 角形分 别表示两类 样本投影 后的中心点.

给定一个数据集D={xi,yi},Xi,μi,Σi分别表示例数集合,均值向量、协方差矩阵

投影之后再直线上的两类样本的中心点就是wTμ0和wTμ1,协方差:wTΣ0w,wTΣ1w

因为投影改变了数据的分布,所以协方差会随之改变。

就像我们之前讲到了,希望他们同类别的更接近,不同类别的就远离。其实就是最大化类中心之间的距离,最小化他们的协方差。这两个我们同时考虑的话。

将其定义为:

①类内散度矩阵

②类间散度矩阵

现在LDA就想要最大化目标Sb和Sw。

也叫做Sb与Sw的‘广义瑞利商’

如何确定w?

先介绍一下拉格朗日乘子法

我的理解就是:有变量,以及对于发原函数,有约束,求偏导,即求最优解

下面是对w的求解

在求解Sw的时候会使用到奇异值的分解

对于奇异值分解不太理解的可以参考这个

降维算法之奇异值分解SVD7000字长文,看这一篇就够了!_奇异值分解降维-CSDN博客

二、多分类LDA

新定义了一个St,全局散度矩阵

同样的要求解W

这里采用的是优化目标

tr(·):代表矩阵的迹,是矩阵的主对角线上元素的总和。

对于多分类LDA的话就是将N个类别的投影到N-1个维度上,实现一个降维

因此,被视为一种经典的降维技术。

三、多分类学习 

利用2分类策略解决多分类问题。

多分类学习的基本思路就是“拆解法“。最经典的有三种:一对一(O vs O),一对多(O vs R),多对多(M vs M).讲到这里,说不定你可以想到之前我们学过的也是类似分割的方法,对于模型评估那一块:有留出法、K折交叉验证法、自助法。

3.1 O vs O

将N个类别两两配对,看作排列组合就是\binom{2}{N},那么就会产生N(N-1)/2个二分类任务。

最终得到N(N-1)/2个分类结果,最终结果通过投票产生,即把预测的最多的类别作为最终分类结果

3.2 O vs R 

将每一个类的样例作为正例,所有其他类的样例作为反类,训练N个分类器,在测试时若有一个分类器预测为正类,则对应的类别标记作为最终的分类结果。丢进去一个样本,若有多个分类器预测为正类,则通常考虑分类器的阈值置信度,选择置信度最大的类别标记作为分类结果。如上图。

其中,OVR需要训练N个分类器,但是OVO,却要训练N(N-1)/2个人分类器。因此一对一的存储开销和测试时间开销通常比一对多的更大,但是在训练的时候,一对多的每个分类器会使用全部的训练样本,而一对一的仅用到两个类的样本,因此在类别很多的时候,一对一的训练时间开销通常比一对多的 小。至于预测性能则却决于具体的数据分布,在多数情形下两者差不多。

3.3 M vs M 

是每次将若干个类作为正类,若干个类作为反类。

但是多对多的正类和反类必须要有特殊的设计、不能随意的选取,在这里我们就介绍一种技术

纠错输出码(ECOC)

第一步:编码:

对N个类别做M次划分,每次划分将一部分类别作为正类,一部分作为反类,从而形成一个二分类发训练集,一共产生M个训练集,可以训练出M个分类器

第二部:解码:

M个分类器分别对测试样本进行预测,这些预测标记组成一个编码,将这个预测编码与每个类别各自的编码进行比较,放回其中距离最小的类别作为最终预测结果

类别划分通过“编码矩阵“指定,编码矩阵有多种形式,常见的主要有——二元编码、三元编码前者将每个类别分别指定为正类和反类,后者在正类和反类之外,还指定了一个停用类。

相关文章:

线性模型-分类

一、线性判别分析LDA 线性判别分析是一种经典的线性学习方法,在二分类问题上最早是Fisher提出的,亦称为Fisher判别分析。 Fisher判别分析是一种用于降维和分类的统计方法,旨在找到可以最好区分不同类别的特征。它基于类内方差和类间方差的比…...

OpenAI前董事会成员称Sam Altman因 “ 向董事会撒谎 ” 而被解雇

据前 OpenAI 董事会成员称,据称 Altman 隐瞒了他对 OpenAI 创业基金的所有权。 更详细的内容请参考原文: https://cointelegraph.com/news/sam-altman-fired-openai-board-allegations 据一位前董事会成员称,Sam Altman 因涉嫌向董事会隐瞒…...

【启明智显分享】WIFI6开发板ZX6010:开源OpenWrt SDK,接受定制!

在数字化飞速发展的当下,网络速度和稳定性已成为各行各业不可或缺的关键因素。今天,我们为大家推荐一款基于IPQ6010的AX1800方案ZX6010 Wi-Fi6开发板,为您的网络世界注入强大动力。 一、超强硬件配置 ZX6010搭载IPQ6010四核ARM Cortex A53处…...

C语言能否使⽤ fflush( ) 函数清除多余的输⼊?

一、问题 在从终端输⼊数据时,很可能会输⼊多余的数据,那么能否使⽤ fflush( ) 函数清除呢? 二、解答 fflush( ) 函数只是⽤在⽂件以写的⽅式打开时,将缓冲区内容写⼊到⽂件。因此 fflush( ) 函数仅对输出流有效,对输…...

如何把试卷上的字去掉再打印?分享三种方法

如何把试卷上的字去掉再打印?随着科技的不断发展,现代教育和学习方式也在逐渐变革。在学习过程中,我们经常需要对试卷进行整理和分析,以便更好地掌握知识点和复习。然而,传统的试卷整理方法往往效率低下且容易出错。幸…...

Android开机动画压缩包zip,自制开机动画(基于Android10.0.0-r41)

文章目录 Android开机动画压缩包zip,自制开机动画1.Android加载压缩包原理2.自制开机动画 Android开机动画压缩包zip,自制开机动画 1.Android加载压缩包原理 这里有个md文件我们看下 核心部分, 首先要创建一个文件叫做desc.txt,这是规定的…...

手机站怎么推广

随着手机的普及和移动互联网的快速发展,越来越多的人开始使用手机进行在线购物、社交娱乐、阅读资讯等,同时也催生了越来越多的手机站的出现。但是,在海量的手机站中,要让自己的手机站脱颖而出,吸引更多用户访问和使用…...

Mysql疑难报错排查 - Field ‘XXX‘ doesn‘t have a default value

项目场景: 数据库环境 :mysql8; 工程使用:MyBatisPlus 表情况: 问题描述 某一个插入语句使用了 MyBatisPlus 的 save 方法,因为end_time1 end_time2都并没有值,所以在MyBatisPlus默认情况下,…...

YOLOv8_obb预测流程-原理解析[旋转目标检测理论篇]

YOLOv8_obb的预测流程,主要分预处理模块、推理模块和后处理模块。这里面有很多内容是和目标检测预测流程是重合的,主要区别在于Angle分支、NMS后处理以及regularize_rboxes部分。本文也主要介绍一下这三个模块,其他模块可以结合YOLOv8预测流程-原理解析[目标检测理论篇]一起…...

02JAVA字符串和集合

1.字符串 1.String 介绍: String在java.lang包下,使用不需要导包,String代表字符串,带""字符串都是String类的对象 字符串的特点: 字符串不可变,他们的值在创建后不能被改变 字符串效果相当于(char[]),底层原理是字节数组(byte[]) String构造方法: String 变量名 ne…...

Qt如何让按钮的菜单出现在按钮的右侧

直接上代码,我们用到了一个eventfilter的函数功能。这个函数比较厉害和重要,大家务必经常拿出来看看。 void MainWindow::initMenu() { QMenu* menuLiXiang new QMenu; QAction* actXiangMuZhangCheng new QAction("项目章程"); …...

C++的类和new和delete和菱形继承机制

文章目录 参考虚函数使用虚函数的class结构相关实现源码IDA反编译子类虚表和父类虚表调用函数菱形继承 参考 https://showlinkroom.me/2017/08/21/C-%E9%80%86%E5%90%91%E5%88%86%E6%9E%90/ https://www.cnblogs.com/bonelee/p/17299985.html https://xz.aliyun.com/t/5242?t…...

Redis教程(二十二):Redis的过期删除和缓存淘汰策略

传送门:Redis教程汇总篇,让你从入门到精通 一、过期删除策略 Redis 中的过期删除策略是与 Redis 管理键的生命周期相关的一系列操作,用于删除过期的Key以释放内存。Redis 提供了三种主要的过期删除策略: 1、惰性删除(Lazy Expiration) 工作原理:当客户端尝试访问一个…...

Lodop 实现局域网打印

文章目录 前言一、Lodop支持打印的方式lodop 打印方式一般有3种:本地打印局域网集中打印广域网AO打印 二、集成步骤查看lodop 插件的服务端口:查看ip后端提供接口返回ip,前端动态获取最后步骤 前言 有时候会根据不同的ip来获取资源文件&…...

HarmonyOS(二十四)——Harmonyos通用事件之触摸事件

1.触摸事件。 触摸事件是HarmonyOS通用事件的一种事件之一,当手指在组件上按下、滑动、抬起时触发。 名称是否冒泡功能描述onTouch(event: (event?: TouchEvent) > void)是手指触摸动作触发该回调,event返回值见下面TouchEvent介绍。 2. TouchEve…...

2024-前端面试的正确打开方式(GitHub火爆场景题剖析)

写在前面 最近前端面试大家有没有感觉到场景题的压迫感!!! 很显然普通面试八股不会怎么更新,而且就前端来说,面试并不是真正困难的,常规八股显示不出面试者的技术水平。 前端作为一个技术行业&#xff0c…...

Vue3项目炫酷实战,检测密码强度值

在前端项目开发中,确保用户密码的强度是保护账户安全的重要措施。本文将演示如何使用Vue 3实现一个简单的密码强度检测功能。通过实时反馈,帮助用户创建更安全的密码,从而提升整体系统的安全性。无论您是前端开发新手还是经验丰富的开发者&am…...

PHP实现抖音小程序用户登录获取openid

目录 第一步、抖音小程序前端使用tt.login获取code 第二步、前端拿到code传给后端 第三步、方法1 后端获取用户信息 第四步、方法2 抖音小程序拿到用户信息把用户信息传给后端 code2Session抖音小程序用户登录后端文档 第一步、抖音小程序前端使用tt.login获取code 前端 …...

Linux进程无法被kill

说明:记录一次应用进程无法被kill的错误; 场景 在一次导出MySQL数据时,使用下面的命令,将数据库数据导出为.sql文件,数据量大,导出时间长,于是我就将服务器重启了。 mysqldump -u username -…...

MySQL binlog三种模式

1.statement statement 记录的是sql语句。比如一条sql,update table_user set age 20 where id between 1 and 100。这条sql会更新100条数据,但是statement 模式下只会记录这条sql语句。 优点:不需要记录数据的变化,减少了bin …...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...