当前位置: 首页 > news >正文

100道大模型面试八股文

算法暑期实习机会快结束了,校招大考即将来袭。

当前就业环境已不再是那个双向奔赴时代了。求职者在变多,岗位在变少,要求还更高了。

最近,我们陆续整理了很多大厂的面试题,帮助球友解惑答疑和职业规划,分享了面试中的那些弯弯绕绕。

分享100道大模型面试八股文,喜欢记得点赞、收藏、关注:

  1. 你了解ReAct吗,它有什么优点?

  2. 解释一下langchain Agent的概念

  3. langchain 有哪些替代方案?

  4. langchain token计数有什么问题?如何解决?

  5. LLM预训练阶段有哪几个关键步骤?

  6. RLHF模型为什么会表现比SFT更好?

  7. 参数高效的微调(PEFT)有哪些方法?

  8. LORA微调相比于微调适配器或前缀微调有什么优势?

  9. 你了解过什么是稀疏微调吗?

  10. 训练后量化(PTQ)和量化感知训练(QAT)有什么区别?

  11. LLMs中,量化权重和量化激活的区别是什么?

  12. AWQ量化的步骤是什么?

  13. 介绍一下GPipe推理框架

  14. 矩阵乘法如何做数量并行?

  15. 请简述TPPO算法流程,它跟TRPO的区别是什么?

  16. 什么是检索增强生成(RAG)?

  17. 目前主流的中文向量模型有哪些?

  18. 为什么LLM的知识更新很困难?

  19. RAG和微调的区别是什么?

  20. 大模型一般评测方法及其准是什么?

  21. 什么是Kv cache技术,它具体是如何实现的?

  22. DeepSpeed推理对算子融合做了哪些优化?

  23. 简述一下FlashAttention的原理

  24. MHA、GQA、MQA三种注意力机制的区别是什么?

  25. 请介绍一下微软的ZeRO优化器

  26. Paged Attention的原理是什么,解决了LLM中的什么问题?

  27. 什么是投机采样技术,请举例说明?

  28. 简述GPT和BERT的区别

  29. 讲一下GPT系列模型的是如何演进的?

  30. 为什么现在的大模型大多是decoder-only的架构?

  31. 讲一下生成式语言模型的工作机理

  32. 哪些因素会导致LLM中的偏见?

  33. LLM中的因果语言建模与掩码语言建模有什么区别?

  34. 如何减轻LLM中的“幻觉”现象?

  35. 解释ChatGPT的“零样本”和“少样本”学习的概念

  36. 你了解大型语言模型中的哪些分词技术?

  37. 如何评估大语言模型(LLMs)的性能?

  38. 如何缓解LLMs复读机问题?

  39. 请简述下Transformer基本原理

  40. 为什么Transformer的架构需要多头注意力机制?

  41. 为什么transformers需要位置编码?

  42. transformer中,同一个词可以有不同的注意力权重吗?

  43. Wordpiece与BPE之间的区别是什么?

  44. 有哪些常见的优化LLMs输出的技术?

  45. GPT-3拥有的1750亿参数,是怎么算出来的?

  46. 温度系数和top-p、top-k参数有什么区别?

  47. 为什么transformer块使用LayerNorm而不是BatchNorm?

  48. 介绍一下post layer norm和pre layer norm的区别

  49. 什么是思维链(CoT)提示?

  50. 你觉得什么样的任务或领域适合用思维链提示?

  51. 目前主流的开源模型体系有哪些?

  52. prefix LM和causal LM区别是什么?

  53. 涌现能力是啥原因?

  54. 大模型LLM的架构介绍?

  55. 什么是LLMs复读机问题?

  56. 为什么会出现LLMs复读机问题?

  57. 如何缓解LLMs复读机问题?

  58. llama输入句子长度理论上可以无限长吗?

  59. 什么情况下用Bert模型,什么情况下用LLama、ChatGLM类大模型,咋选?

  60. 各个专长领域是否需要各自的大模型来服务?

  61. 如何让大模型处理更长的文本?

  62. 为什么大模型推理时显存涨的那么多还一直占着?

  63. 大模型在gpu和cpu上推理速度如何?

  64. 推理速度上,int8和fp16比起来怎么样?

  65. 大模型有推理能力吗?

  66. 大模型生成时的参数怎么设置?

  67. 有哪些省内存的大语言模型训练/微调/推理方法?

  68. 如何让大模型输出台规化

  69. 应用模式变更

  70. 大模型怎么评测?

  71. 大模型的honest原则是如何实现的?

  72. 模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?

  73. 奖励模型需要和基础模型一致吗?

  74. RLHF在实践过程中存在哪些不足?

  75. 如何解决人工产生的偏好数据集成本较高,很难量产问题?

  76. 如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?

  77. 如何解决PPO的训练过程中同时存在4个模型(2训练,2推理),对计算资源的要求较高问题?

  78. 如何给LLM注入领域知识?

  79. 如果想要快速检验各种模型,该怎么办?

  80. 预训练数据Token重复是否影响模型性能?

  81. 什么是位置编码?

  82. 什么是绝对位置编码?

  83. 什么是相对位置编码?

  84. 旋转位置编码RoPE思路是什么?

  85. 旋转位置编码RoPE有什么优点?

  86. 什么是长度外推问题?

  87. 长度外推问题的解决方法有哪些?

  88. ALiBi(Attention with Linear Biases)思路是什么?

  89. ALiBi(Attention with Linear Biases)的偏置矩阵是什么?有什么作用?

  90. ALiBi(Attention with Linear Biases)有什么优点?

  91. Layer Norm的计算公式写一下?

  92. RMS Norm的计算公式写一下?

  93. RMS Norm相比于Layer Norm有什么特点?

  94. Deep Norm思路?

  95. 写一下Deep Norm代码实现?

  96. Deep Norm有什么优点?

  97. LN在LLMs中的不同位置有什么区别么?如果有,能介绍一下区别么?

  98. LLMs各模型分别用了哪种Layer normalization?

  99. 介绍一下FFN块计算公式?

  100. 介绍一下GeLU计算公式?

  101. 介绍一下Swish计算公式?

  102. 介绍一下使用GLU线性门控单元的FFN块计算公式?

  103. 介绍一下使用GeLU的GLU块计算公式?

  104. 介绍一下使用Swish的GLU块计算公式?

面试精选

  • 《大模型面试宝典》(2024版) 正式发布!

  • 一文搞懂 Transformer

  • 一文搞懂 Attention(注意力)机制

  • 一文搞懂 Self-Attention 和 Multi-Head Attention

  • 一文搞懂 BERT(基于Transformer的双向编码器)

  • 一文搞懂 GPT(Generative Pre-trained Transformer)

  • 一文搞懂 Embedding(嵌入)

  • 一文搞懂 Encoder-Decoder(编码器-解码器)

  • 一文搞懂大模型的 Prompt Engineering(提示工程)

  • 一文搞懂 Fine-tuning(大模型微调)

  • 一文搞懂 LangChain

  • 一文搞懂 LangChain 的 Retrieval 模块

  • 一文搞懂 LangChain 的智能体 Agents 模块

  • 一文搞懂 LangChain 的链 Chains 模块

相关文章:

100道大模型面试八股文

算法暑期实习机会快结束了,校招大考即将来袭。 当前就业环境已不再是那个双向奔赴时代了。求职者在变多,岗位在变少,要求还更高了。 最近,我们陆续整理了很多大厂的面试题,帮助球友解惑答疑和职业规划,分…...

【ARM Cache 及 MMU 系列文章 6.2 -- ARMv8/v9 Cache 内部数据读取方法详细介绍】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Direct access to internal memoryL1 cache encodingsL1 Cache Data 寄存器Cache 数据读取代码实现Direct access to internal memory 在ARMv8架构中,缓存(Cache)是用来加速数据访…...

使用Vue.js将form表单传递到后端

一.form表单 <form submit.prevent"submitForm"></form> form表单像这样写出来&#xff0c;然后把需要用户填写的内容写在form表单内。 二.表单内数据绑定 <div class"input-container"><div style"margin-left: 9px;"&…...

6、架构-服务端缓存

为系统引入缓存之前&#xff0c;第一件事情是确认系统是否真的需要缓 存。从开发角度来说&#xff0c;引入缓存会提 高系统复杂度&#xff0c;因为你要考虑缓存的失效、更新、一致性等问题&#xff1b;从运维角度来说&#xff0c;缓存会掩盖一些缺 陷&#xff0c;让问题在更久的…...

服务器遭遇UDP攻击时的应对与解决方案

UDP攻击作为分布式拒绝服务(DDoS)攻击的一种常见形式&#xff0c;通过发送大量的UDP数据包淹没目标服务器&#xff0c;导致网络拥塞、服务中断。本文旨在提供一套实用的策略与技术手段&#xff0c;帮助您识别、缓解乃至防御UDP攻击&#xff0c;确保服务器稳定运行。我们将探讨监…...

美团发布2024年一季度财报:营收733亿元,同比增长25%

6月6日&#xff0c;美团(股票代码:3690.HK)发布2024年第一季度业绩报告。受益于经济持续回暖和消费复苏&#xff0c;公司各项业务继续取得稳健增长&#xff0c;营收733亿元(人民币&#xff0c;下同)&#xff0c;同比增长25%。 财报显示&#xff0c;一季度&#xff0c;美团继续…...

sql注入-布尔盲注

布尔盲注&#xff08;Boolean Blind SQL Injection&#xff09;是一种SQL注入攻击技术&#xff0c;用于在无法直接获得查询结果的情况下推断数据库信息&#xff1b;它通过发送不同的SQL查询来观察应用程序的响应&#xff0c;进而判断查询的真假&#xff0c;并逐步推断出有用的信…...

docker-compose部署 kafka 3.7 集群(3台服务器)并启用账号密码认证

文章目录 1. 规划2. 服务部署2.1 kafka-012.2 kafka-022.3 kafka-032.4 启动服务 3. 测试3.1 kafkamap搭建&#xff08;测试工具&#xff09;3.2 测试 1. 规划 服务IPkafka-0110.10.xxx.199kafka-0210.10.xxx.198kafka-0310.10.xxx.197kafkamp10.10.xxx.199 2. 服务部署 2.1…...

LeetCode-704. 二分查找【数组 二分查找】

LeetCode-704. 二分查找【数组 二分查找】 题目描述&#xff1a;解题思路一&#xff1a;注意开区间和闭区间背诵版&#xff1a;解题思路三&#xff1a; 题目描述&#xff1a; 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xf…...

Rust 性能分析

都说Rust性能好,但是也得代码写得好,猜猜下面两个代码哪个快 . - 力扣&#xff08;LeetCode&#xff09; use std::collections::HashMap; use lazy_static::lazy_static;lazy_static! {static ref DIGIT: HashMap<char, usize> {let mut m HashMap::new();for c in …...

Gradle和Maven都是广泛使用的项目自动化构建工具

Gradle和Maven都是广泛使用的项目自动化构建工具&#xff0c;但它们在多个方面存在差异。以下是关于Gradle和Maven的详细对比&#xff1a; 一、构建脚本语言 Maven&#xff1a;使用XML作为构建脚本语言。XML的语法较为繁琐&#xff0c;不够灵活&#xff0c;对于复杂的构建逻辑…...

Seed-TTS语音编辑有多强?对比实测结果让你惊叹!

GLM-4-9B 开源系列模型 前言 就在最近&#xff0c;ByteDance的研究人员最近推出了一系列名为Seed-TTS的大规模自回归文本转语音(TTS)模型,能够合成几乎与人类语音无法区分的高质量语音。那么Seed-TTS的表现究竟有多强呢?让我们一起来感受下Seed-TTS带来的惊喜吧! 介绍Seed-TTS…...

Vue3——实现word,pdf上传之后,预览功能(实测有效)

vue-office/pdf - npm支持多种文件(**docx、excel、pdf**)预览的vue组件库&#xff0c;支持vue2/3。也支持非Vue框架的预览。. Latest version: 2.0.2, last published: a month ago. Start using vue-office/pdf in your project by running npm i vue-office/pdf. There are …...

JVM之【类的生命周期】

首先&#xff0c;请区分Bean的声明周期和类的声明周期。此处讲的是类的声明周期 可以同步观看另一篇文章JVM之【类加载机制】 概述 在Java中数据类型分为基本数据类型和引用数据类型 基本数据类型由虚拟机预先定义&#xff0c;引用数据类型则需要进行类的加载 按照]ava虚拟机…...

分库分表场景下,如何设计与实现一种高效的分布式ID生成策略

在构建大规模分布式系统时&#xff0c;随着数据量的爆炸式增长&#xff0c;单个数据库往往难以承载如此庞大的数据存储与访问需求。这时&#xff0c;分库分表便成为一种有效的解决方案&#xff0c;它通过将数据分散存储在多个数据库或表中&#xff0c;从而提高系统的处理能力和…...

机器人系统ros2-开发学习实践16-RViz 用户指南

RViz 是 ROS&#xff08;Robot Operating System&#xff09;中的一个强大的 3D 可视化工具&#xff0c;用于可视化机器人模型、传感器数据、路径规划等。以下是RViz用户指南&#xff0c;帮助你了解如何使用RViz来进行机器人开发和调试。 启动可视化工具 ros2 run rviz2 rviz2…...

安全测试 之 安全漏洞 CSRF

1. 背景 安全测试是在功能测试的基础上进行的&#xff0c;它验证软件的安全需求&#xff0c;确保产品在遭受恶意攻击时仍能正常运行&#xff0c;并保护用户信息不受侵犯。 2. CSRF 定义 CSRF&#xff08;Cross-Site Request Forgery&#xff09;&#xff0c;中文名为“跨站请…...

交易中的预测和跟随

任何的交易决策&#xff0c;一定是基于某种推理关系的&#xff0c;这种推理关系是基于t时刻之前的状态&#xff0c;得到t时刻之后的结果&#xff0c;我们基于这种推理关系&#xff0c;根据当前的状态&#xff0c;形成了未来结果的某种预期&#xff0c;然后基于这种预期采取相应…...

vs2022专业版永久密钥

vs2022专业版永久密钥&#xff1a; vs2022专业版永久密钥&#xff1a; Visual Studio 2022 Enterprise&#xff1a;VHF9H-NXBBB-638P6-6JHCY-88JWH Visual Studio 2022 Professional&#xff1a;TD244-P4NB7-YQ6XK-Y8MMM-YWV2J...

MongoDB环境搭建

一.下载安装包 Download MongoDB Community Server | MongoDB 二、双击下载完成后的安装包开始安装&#xff0c;除了以下两个部分需要注意操作&#xff0c;其他直接next就行 三.可视化界面安装 下载MongoDB-compass&#xff0c;地址如下 MongoDB Compass Download (GUI) | M…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...