当前位置: 首页 > news >正文

交易中的预测和跟随

        任何的交易决策,一定是基于某种推理关系的,这种推理关系是基于t时刻之前的状态,得到t时刻之后的结果,我们基于这种推理关系,根据当前的状态,形成了未来结果的某种预期,然后基于这种预期采取相应的决策,这个是没有问题的。关键在于这个推理关系的结构和特征是怎么样的,不同的推理关系,对应着我们所谓的预测和跟随。

决策模型(类比RNN类神经网络模型)

量化模型:

输入:可以很多,相对高质量

模型结构:隐层可以很长,也可以较短,性能和结果的均衡,其中隐层长度可以简单认为决策的逻辑链条长度

优化目标:收益误差,可以认为综合了胜率和盈亏比

普通散户:

输入:很有限,基本而有限的量价数据和各种消息,其中消息包含着各种偏差,质量低下

模型结构:隐层,也就是决策链条短,模型结构简单

优化目标:胜率权重很大

主观交易高手:

输入:很有限的量价数据,以及各种消息,相比于普通散户差别不大

模型结构:相比于量化和普通散户,模型架构不一样,可以通过少量的稀疏的数据,训练得到很好的结果,决策链条往往较长

优化目标:盈亏比权重大

        任何模型,输入更新,输出就可以更新,只是大部分时候,输出的预测,其确定性是不高的,我们称这种确定性不高的预测为弱关系,把确定性较高的预测为强关系。

        从优化目标看,量化模型输出的是具体价格预测,散户输出的更多是涨跌预测,高手输出的更多是盈亏比预测。

        量化模型价格预测综合了胜率和盈亏比,由于其可以规模化、自动化、非情绪化,因此其可以进行大规模的多次的交易,样本越大,就可以越向统计结果收敛,那么只要其具备统计优势,就是一个可以稳定盈利的模型,即使是弱预测、弱关系。

        主观交易者,不具备量化模型的规模化分析和交易能力,因此注定无法通过弱预测实现稳定盈利,因为弱关系是量化模型的优势,主观交易的弱关系,现在已经很难有正期望,无论是从模式还是执行层面,即使其模式本身可能具备正期望,也不考虑执行上的弱势,只要无法稳定,只要账户波动大,那么其情绪化特点会对其模型造成极大干扰,因为情绪和模型共处一个大脑,并不独立,这种干扰无法避免,即使通过自我训练,也只能尽量降低,无法杜绝。而且这种干扰往往是负面干扰,因为人性弱点是共性,这种共性形成了趋同,趋同是很好的alpha来源,一旦人性暴露,就会称为alpha收割机们的鱼肉。

        因此,主观交易者,应该选择的盈利路径,一定是高确定性的方式,也就是强关系、强预测。强关系,意味着其信号次数一定是不多的,因为次数多的强关系,就会增加被发现的概率,时间一长,一定会被充分发掘,从而会变成弱关系。因此,主观高手,其出手次数一定是不多的,如果你频繁交易了,随意交易了,你就该反思了,你在进行毫无优势的,注定要亏损的弱关系交易。

        强关系的特点,除了次数少,其输入稀疏但是很重要,也就是在训练的时候,对一些关键输入赋予了较大的权重,而且模型结构(决策链条)更加的准确,输入的相对位置更加准确,对应着现实中更加准确的逻辑决策链条,因此,强关系的决策过程,往往是需要经过一系列前置条件的,类似一颗决策树,不断分叉,可能每个节点单独拎出来,直接指向最终目标的预测都是弱预测,但是其贯穿起来,达到最终的叶子目标节点,其就是一个强关系,我们可以把这种强关系在现实中映射为一种方案,即当某个节点出现了某个状态,那么我就要看下一个节点的状态,然后根据其状态,再看下一个节点,直到可以做出最终的决策,这个实际上就是一种计划、一种方案,而不是直接通过第一个节点或者前几个节点就做出决策了,这样关系就会不够强。那么自然的,这种强关系由于前置条件比较多,自然有效的信号次数是比较少的,这是完全合理的。

        强关系的训练优化目标更多是盈亏比,因为胜率目标本身是很难作为强关系存在的,价格的涨跌,其决定因素太多了,随机性也比较强,其不具备强关系的属性,也就是很难具备较高的确定性,而且这种需要分析多因素的关系,优势在量化,而量化的特点就是消灭一切能够消灭的强关系,因此,胜率很难作为强关系的优化目标。

        高盈亏比的特点是什么,就是单次风险小,高盈亏比实际上就是一种风控为先的交易哲学。这对于主观交易者来讲尤其重要,只有控制住了风险,才能保持情绪稳定,才能更好的执行交易计划,主观交易者如果情绪不稳定,那再好的计划失去了实现的基础;只有控制住了风险,才能比较长久的在市场中存活下去,才有足够的时间去训练优化自己,如果没有足够的时间,那再好的潜质,也就没有了爆发出来的基础。因此,主观交易者,要视盈亏比为交易系统的核心,把高盈亏比作为最高的交易哲学和原则之一,这样才更有可能走出来。

        综上,我们知道,主观交易,要想稳定盈利,只能依靠强关系,而且是量化很难消灭的强关系,那么就基本只剩下盈亏比为优化目标的强关系。什么是量化难以消灭的强关系,就是不能只依赖量价数据,样本稀疏,决策链条相对复杂的强关系,可以通过少量稀疏样本,准确的学习到相对复杂的决策模型,这种模型结构,我想也只有人类的大脑才能做到了,只要训练到位,交易世界里,我相信主观高手一定是最强的,毕竟人脑才是最强大的神经网络模型。

        最后回到文章标题,通俗语境中的预测和跟随是什么意思,为什么很多高手说,不做预测,只跟随?我想现在可以给出答案了,预测就是弱关系,主观交易不能依据弱关系形成交易决策,跟随是强关系,是弱关系的逻辑连贯,形成的一种高盈亏比的交易计划或者方案。当然,严格来讲,强弱关系,本质都包含了预测,只是弱关系中,预测差不多就是终点了,重点在于选择最大概率那个预测指导交易,而强关系中,预测的是一种概率分布,更重要的是概率分布下每种情况的后续节点的交易计划,而且每种交易计划,都要具备高盈亏比,因为这是训练优化的目标,主观上我们当然可以对概率较高的节点计划准备充分一些。所以不做预测只做跟随,想表达的意思,就是我们不能依据弱关系弱预测去进行交易,因为主观上这很难稳定盈利,而是应该着重在高盈亏比的交易计划上,跟随指的就是通过弱关系更新我们的后验概率分布,然后选择相应节点下对应的高盈亏比的交易计划,我们日常训练优化我们的模式的时候,重点就是强化这种交易计划,从而可以快速准确的对弱关系做出具备高盈亏比确定性的应对。

相关文章:

交易中的预测和跟随

任何的交易决策,一定是基于某种推理关系的,这种推理关系是基于t时刻之前的状态,得到t时刻之后的结果,我们基于这种推理关系,根据当前的状态,形成了未来结果的某种预期,然后基于这种预期采取相应…...

vs2022专业版永久密钥

vs2022专业版永久密钥: vs2022专业版永久密钥: Visual Studio 2022 Enterprise:VHF9H-NXBBB-638P6-6JHCY-88JWH Visual Studio 2022 Professional:TD244-P4NB7-YQ6XK-Y8MMM-YWV2J...

MongoDB环境搭建

一.下载安装包 Download MongoDB Community Server | MongoDB 二、双击下载完成后的安装包开始安装,除了以下两个部分需要注意操作,其他直接next就行 三.可视化界面安装 下载MongoDB-compass,地址如下 MongoDB Compass Download (GUI) | M…...

数据结构【队列】

队列的的概念 队列是一种特殊的线性表,特殊之处在于它只允许在表的头部进行删除操作,而在表的尾部进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中…...

微信小程序上架,AI类目审核(AI问答、AI绘画、AI换脸)

小程序对于生成式AI类目的产品上架审核较为严格,这也是近两年新增了几个类目,一旦小程序中涉及生成式AI相关的内容,如果你选择相应类目,但审核被划归为这一类,都需要准备此类目的审核,才能正常上架。 如果…...

Vue3学习记录(第一天)

Vue3学习记录_第一天 背景说明记录Vue3实现响应式前端的反射前端对象的属性赋值Vue3响应式实现过程稿前端移除对象的属性 背景 本次学习主要是看视频学习, 没有跟练, 但是很多知识点感觉又容易忘记. 所以通过笔记的方式输出一下. 说明 估计只能自己看懂, 如果能提供一些其他…...

springboot+vue+mybatis房屋租贷系统+PPT+论文+讲解+售后

本论文系统地描绘了整个网上房屋租赁系统的设计与实现,主要实现的功能有以下几点:管理员;首页、个人中心、房屋类型管理、房屋租赁管理、会员管理、订单信息管理、合同信息管理、退房评价管理、管理员管理,系统管理,前…...

Day30 登录界面设计

​ 本章节,实现了登录界面窗口设计 一.准备登录界面图片素材(透明背景图片) 把准备好的图片放在 Images 文件夹下面,格式分别是 .png和 .icoico 图片,右键属性,生成操作选 内容 png 图片,右键属性,生成操作选 资源 选中 login.png图片鼠标右键,选择属性。生成的操作选…...

VOJ 迷阵突围 题解 次短路径 dijkstra算法

迷阵突围 题目描述 小明陷入了坐标系上的一个迷阵,迷阵上有 n 个点,编号从 1 到 n 。小明在编号为 1 的位置,他想到编号为 n 的位置上。小明当然想尽快到达目的地,但是他觉得最短的路径可能有风险,所以他会选择第二短…...

Oracle SQL详解

Oracle SQL是一种用于管理和操作Oracle数据库的编程语言。以下是一些基本的Oracle SQL语法和建表建用户的详解。 创建用户 在Oracle中,创建用户通常需要具有足够权限的用户(通常是具有DBA角色的用户)。以下是一个创建用户的例子:…...

产业,到底需要什么大模型?

[ 产业究竟需要怎样的大模型?关于这个问题,本文作者便提出了他的看法,并总结了产业大模型目前阶段的三点落地挑战。一起来看看,或许可以帮助你更好地理解大模型与行业、与产业的融合。 写下这篇的起因,是前不久的一件事…...

每日5题Day17 - LeetCode 81 - 85

每一步向前都是向自己的梦想更近一步,坚持不懈,勇往直前! 第一题:81. 搜索旋转排序数组 II - 力扣(LeetCode) class Solution {public boolean search(int[] nums, int target) {int n nums.length;if (n…...

后端开发面经系列 --中望C++面经

中望C面经,全部内容! 公众号:阿Q技术站 文章目录 中望C面经,全部内容!一面 8.15 时长45min1、介绍项目相关2、gdb怎么调试的?打断点用什么指令?3、gcc的编译过程4、cmake添加头文件搜索路径用…...

德国西门子论未来质量管理 - 如何与明天相遇?

未来制造业的质量 -- 如何用软件方案满足质量要求 作者:Bill Butcher 翻译&编辑:数字化营销工兵 【前言】在Frost&Sullivan最近发表的一份白皮书中,他们讨论了制造业的质量投资。质量是制造过程的关键要素,但似乎比其他…...

webpack快速入门---webpack的安装和基本使用

webpack是什么 本质上,webpack 是一个用于现代 JavaScript 应用程序的 静态模块打包工具。当 webpack 处理应用程序时,它会在内部从一个或多个入口点构建一个 依赖图(dependency graph),然后将你项目中所需的每一个模块组合成一个或多个 bund…...

后端开发面经系列 -- 华为C++一面面经

HUAWEI – C一面面经 公众号:阿Q技术站 来源:https://www.nowcoder.com/feed/main/detail/b8113ff340d7444985b32a73c207c826 1、计网的协议分几层?分别叫什么? OSI七层模型 物理层 (Physical Layer): 负责物理设备之间的原始比…...

csrf漏洞与ssrf漏洞

环境:用kali搭建的pikachu靶场 一.CSRF 1.CSRF漏洞简介 跨站请求伪造(CSRF)漏洞是一种Web应用程序安全漏洞,攻击者通过伪装成受信任用户的请求来执行未经授权的操作。这可能导致用户在不知情的情况下执行某些敏感操作&#xff0…...

AWS EC2服务器开启root密码,SSH登录

1) EC2 Instance Connect连接,更改root密码 sudo passwd root 2)接着切换到切换到 root 身份,编辑 SSH 配置文件 $ sudo -i$ vi /etc/ssh/sshd_configPasswordAuthentication no,把 no 改成 yes #PermitRootLogin prohibit-passw…...

常见代码版本管理工具

目录 一、引言 二、Gitee (一)优点与特点 (二)缺点 (三)使用报告 三、GitHub 四、SVN 五、总结 一、引言 在软件开发过程中,代码版本控制工具是不可或缺的。Gitee、GitHub和SVN是三种常…...

最新版点微同城源码34.7+全套插件+小程序前后端

带全套插件 自己耐心点配置一下插件 可以H5可以小程序 一款专属的同城服务平台对于企业和个人而言,无疑是拓展业务、提升服务品质的重要一环。点微同城源码搭配全套插件,以及完善的小程序前后端,将为您的业务发展提供强大支持 源码免费下载…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...