当前位置: 首页 > news >正文

AI学习指南机器学习篇-逻辑回归正则化技术

AI学习指南机器学习篇-逻辑回归正则化技术

在机器学习领域,逻辑回归是一种常见的分类算法,它常用于处理二分类问题。在实际的应用中,为了提高模型的泛化能力和降低过拟合风险,逻辑回归算法通常会使用正则化技术。本文将介绍逻辑回归中的正则化方法,包括L1正则化(Lasso)和L2正则化(Ridge),并给出详细的示例。

逻辑回归和正则化

逻辑回归是一种用于解决二分类问题的机器学习算法,它通过一个sigmoid函数将输入特征映射到0和1之间的概率值,并根据阈值进行分类。在逻辑回归中,我们通常使用的损失函数是交叉熵损失函数,目标是最小化损失函数来拟合训练数据。

然而,在实际应用中,我们常常面临的问题是模型的复杂度过高,导致过拟合的风险增加。为了应对这个问题,逻辑回归算法通常采用正则化技术来限制模型的复杂度,降低过拟合风险。正则化可以在损失函数中引入惩罚项,从而约束模型的参数,使其更加简单。

L1正则化(Lasso)

L1正则化也被称为Lasso正则化,它在损失函数中引入了参数的绝对值之和作为惩罚项。L1正则化的损失函数可以表示为:

L ( θ ) = ∑ i = 1 m − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) + λ ∑ j = 1 n ∣ θ j ∣ L(\theta) = \sum_{i=1}^{m} -y^{(i)} \log(h_\theta(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) + \lambda \sum_{j=1}^{n} |\theta_j| L(θ)=i=1my(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))+λj=1nθj

其中, m m m表示样本数量, n n n表示特征数量, y ( i ) y^{(i)} y(i)表示第 i i i个样本的真实标签, h θ ( x ( i ) ) h_\theta(x^{(i)}) hθ(x(i))表示模型的预测概率, θ \theta θ表示模型的参数, λ \lambda λ是正则化参数。L1正则化的惩罚项是参数的绝对值之和,它具有稀疏性的特点,可以用于特征选择。

下面我们通过一个示例来说明L1正则化的作用。假设我们有一个二分类问题,数据集包括100个样本和10个特征,我们可以使用逻辑回归模型对数据进行训练,并进行L1正则化来控制模型的复杂度。

import numpy as np
from sklearn.linear_model import LogisticRegression# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(0, 2, 100)# 使用逻辑回归模型进行训练,设置L1正则化参数为1
model = LogisticRegression(penalty="l1", C=1.0, solver="liblinear")
model.fit(X, y)# 输出模型的参数
print(model.coef_)

通过以上示例,我们可以看到L1正则化可以使得模型的参数变得更加稀疏,这对于特征选择和模型解释性具有重要意义。

L2正则化(Ridge)

L2正则化也被称为Ridge正则化,它在损失函数中引入了参数的平方和作为惩罚项。L2正则化的损失函数可以表示为:

L ( θ ) = ∑ i = 1 m − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) + λ ∑ j = 1 n θ j 2 L(\theta) = \sum_{i=1}^{m} -y^{(i)} \log(h_\theta(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) + \lambda \sum_{j=1}^{n} \theta_j^2 L(θ)=i=1my(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))+λj=1nθj2

其中,符号的含义与L1正则化相同。与L1正则化不同的是,L2正则化对参数的惩罚项是参数的平方和,它不具有稀疏性的特点,而是能够使得模型的参数更加平滑。

接下来我们通过一个示例来说明L2正则化的作用。我们仍然使用上面的数据集和逻辑回归模型,但是这次我们将使用L2正则化参数来训练模型。

import numpy as np
from sklearn.linear_model import LogisticRegression# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(0, 2, 100)# 使用逻辑回归模型进行训练,设置L2正则化参数为1
model = LogisticRegression(penalty="l2", C=1.0, solver="lbfgs")
model.fit(X, y)# 输出模型的参数
print(model.coef_)

通过以上示例,我们可以看到L2正则化可以使得模型的参数变得更加平滑,这对于降低模型的复杂度和提高泛化能力具有重要意义。

总结

在本文中,我们介绍了逻辑回归中的正则化技术,包括L1正则化(Lasso)和L2正则化(Ridge),并给出了详细的示例。正则化技术可以有效地限制模型的复杂度,降低过拟合风险,并对特征选择和模型解释性具有重要意义。在实际应用中,我们可以根据具体的问题和数据特点来选择合适的正则化技术,从而提高模型的性能和泛化能力。

希望本文对您理解逻辑回归中的正则化技术有所帮助,谢谢阅读!

相关文章:

AI学习指南机器学习篇-逻辑回归正则化技术

AI学习指南机器学习篇-逻辑回归正则化技术 在机器学习领域,逻辑回归是一种常见的分类算法,它常用于处理二分类问题。在实际的应用中,为了提高模型的泛化能力和降低过拟合风险,逻辑回归算法通常会使用正则化技术。本文将介绍逻辑回…...

Django按照文章ID删除文章

重点是‘文章的ID’作为参数,如何在各个部分传递。 1、在视图函数部分 login_required def article_list(request):articles ArticlePost.objects.filter(authorrequest.user)context {articles: articles, }return render(request, article/column/article_lis…...

Java | Leetcode Java题解之第136题只出现一次的数字

题目: 题解: class Solution {public int singleNumber(int[] nums) {int single 0;for (int num : nums) {single ^ num;}return single;} }...

文件系统小册(FusePosixK8s csi)【1 Fuse】

文件系统小册(Fuse&Posix&K8s csi)【1 Fuse:用户空间的文件系统】 Fuse(filesystem in userspace),是一个用户空间的文件系统。通过fuse内核模块的支持,开发者只需要根据fuse提供的接口实现具体的文件操作就可以实现一个文…...

Bootstrap 环境安装

Bootstrap 环境安装 Bootstrap 是一个流行的前端框架,用于快速开发响应式和移动设备优先的网站。在开始使用 Bootstrap 之前,您需要安装相应的环境。本文将指导您如何安装 Bootstrap 环境。 1. 环境要求 在开始之前,请确保您的计算机上已安装以下软件: Node.js:Bootstr…...

GWT 与 Python App Engine 集成

将 Google Web Toolkit (GWT) 与 Python App Engine 集成可以实现强大的 Web 应用程序开发。这种集成允许你使用 GWT 的 Java 客户端技术构建丰富的用户界面,并将其与 Python 后端结合在一起,后端可以运行在 Google App Engine 上。 1、问题背景 在 Pyt…...

golang的函数为什么能有多个返回值?

在golang1.17之前,函数的参数和返回值都是放在函数栈里面的,比如函数A调用函数B,那么B的实参和返回值都是存放在函数A的栈里面,所以可以轻松的返回多个值。 其他的编程语言大都使用某个寄存器来存储函数的返回值。 但是从golang…...

一次 K8s 故障诊断:从 CPU 高负载到存储挂载泄露根源揭示

一、背景 现代软件部署中,容器技术已成为不可或缺的一环,在云计算和微服务架构中发挥着核心作用。随着容器化应用的普及,确保容器环境的可靠性成为了一个至关重要的任务。这就是容器SRE(Site Reliability Engineering&#xff0c…...

python大作业:实现的简易股票简易系统(含源码、说明和运行截图)

实现一个简单的股票交易模拟系统。该系统将包括以下几个部分: 数据处理:从CSV文件中读取股票数据。 股票交易算法:实现一个简单的交易策略。 命令行界面(CLI):允许用户查看股票数据和进行交易。 数据持久化:将用户的交易记录和当前资金存储在数据库中。 为了简化这个示例…...

python-NLP常用数据集0.1.012

XNLI数据集 用户语言翻译和跨语言分类的语料库 官网地址:https://github.com/facebookresearch/XNLI下载地址:https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip注意事项:数据集有json格式的,和txt格式的数据格式 txt格式 la…...

【大事件】docker可能无法使用了

今天本想继续学习docker的命令,突然发现官方网站的文档页面打不开了。 难道是被墙了? 我用同事的翻了一下,能进,果然! 正好手头的工作告一段落,将代码上传,然后通过jenkins将服务器自动部署到…...

探索Linux中的gzip命令:压缩与解压缩的艺术

探索Linux中的gzip命令:压缩与解压缩的艺术 在Linux世界中,文件压缩和解压缩是日常任务中不可或缺的一部分。gzip命令是这些任务中的佼佼者,它提供了高效的压缩和解压缩功能,广泛应用于各种场景。本文将带您深入了解gzip命令的工…...

Shell 输入/输出重定向

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝&#x1f49…...

为什么RPC要比Http高效?

RPC和HTTP RPC(Remote Procedure Call)基于TCP连接通常比HTTP在性能上要高很多,原因如下: 1. 协议开销 HTTP开销: HTTP协议报文头部相对较大,包含大量的元数据(如方法、URI、头字段等&#x…...

局域网电脑监控软件是如何监控到内网电脑的?

在信息化快速发展的今天,局域网电脑监控软件成为许多企业、学校和机构重要的实用工具。这些软件的主要功能在于对局域网内的电脑进行实时监控,以确保网络的安全、员工的工作效率以及合规性。那么,局域网电脑监控软件是如何做到对内网电脑进行…...

精妙无比的App UI 风格

精妙无比的App UI 风格...

SQL优化系列-快速学会分析SQL执行效率(下)

1 show profile 分析慢查询 有时需要确定 SQL 到底慢在哪个环节,此时 explain 可能不好确定。在 MySQL 数据库中,通过 profile,能够更清楚地了解 SQL 执行过程的资源使用情况,能让我们知道到底慢在哪个环节。 知识扩展&#xff1…...

交流非线性RCD负载的核心功能

非线性RCD负载是一种广泛应用于电力系统中的电子元件,主要用于保护电路免受过电压和欠电压的影响。它的核心功能主要包括以下几个方面: 1. 过电压保护:当电路中的电压超过设定值时,非线性RCD负载会自动断开电路,防止电…...

英语学习笔记31——Where‘s Sally?

Where’s Sally? Sally在哪? 词汇 Vocabulary garden /ˈɡɑːrdn/ n. 花园,院子(属于私人) 区别:park n. 公园(公共的) 例句:我的花园非常大。    My garden is very big. 搭…...

【Unity脚本】使用脚本操作游戏对象的组件

【知识链】Unity -> Unity脚本 -> 游戏对象 -> 组件 【知识链】Unity -> Unity界面 -> Inspector【摘要】本文介绍如何使用脚本添加、删除组件,以及如何访问组件 文章目录 引言第一章 游戏对象与组件1.1 什么是组件?1.2 场景、游戏对象与…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...