python-NLP常用数据集0.1.012
XNLI数据集
用户语言翻译和跨语言分类的语料库
- 官网地址:https://github.com/facebookresearch/XNLI
- 下载地址:https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip
- 注意事项:数据集有json格式的,和txt格式的
- 数据格式
txt格式
language gold_label sentence1_binary_parse sentence2_binary_parse sentence1_parse sentence2_parse sentence1 sentence2 promptID pairID genre label1 label2 label3 label4 label5 sentence1_tokenized sentence2_tokenized match
ar neutral وقال، ماما، لقد عدت للمنزل. اتصل بأمه حالما أوصلته حافلة المدرسية. 1 1 facetoface neutral contradiction neutral neutral neutral وقال ، ماما ، لقد عدت للمنزل . اتصل بأمه حالما أوصلته حافلة المدرسية . True
ar contradiction وقال، ماما، لقد عدت للمنزل. لم ينطق ببنت شفة. 1 2 facetoface contradiction contradiction contradiction contradiction contradiction وقال ، ماما ، لقد عدت للمنزل . لم ينطق ببنت شفة . True
ar entailment وقال، ماما، لقد عدت للمنزل. أخبر أمه أنه قد عاد للمنزل. 1 3 facetoface entailment entailment neutral entailment entailment وقال ، ماما ، لقد عدت للمنزل . أخبر أمه أنه قد عاد للمنزل . True
ar neutral
json格式
{"annotator_labels": ["neutral", "contradiction", "neutral", "neutral", "neutral"], "genre": "facetoface", "gold_label": "neutral", "language": "ar", "match": "True", "pairID": "1", "promptID": "1", "sentence1": "\u0648\u0642\u0627\u0644\u060c \u0645\u0627\u0645\u0627\u060c \u0644\u0642\u062f \u0639\u062f\u062a \u0644\u0644\u0645\u0646\u0632\u0644.", "sentence1_tokenized": "\u0648\u0642\u0627\u0644 \u060c \u0645\u0627\u0645\u0627 \u060c \u0644\u0642\u062f \u0639\u062f\u062a \u0644\u0644\u0645\u0646\u0632\u0644 .", "sentence2": "\u0627\u062a\u0635\u0644 \u0628\u0623\u0645\u0647 \u062d\u0627\u0644\u0645\u0627 \u0623\u0648\u0635\u0644\u062a\u0647 \u062d\u0627\u0641\u0644\u0629 \u0627\u0644\u0645\u062f\u0631\u0633\u064a\u0629.", "sentence2_tokenized": "\u0627\u062a\u0635\u0644 \u0628\u0623\u0645\u0647 \u062d\u0627\u0644\u0645\u0627 \u0623\u0648\u0635\u0644\u062a\u0647 \u062d\u0627\u0641\u0644\u0629 \u0627\u0644\u0645\u062f\u0631\u0633\u064a\u0629 ."}
{"annotator_labels": ["contradiction", "contradiction", "contradiction", "contradiction", "contradiction"], "genre": "facetoface", "gold_label": "contradiction", "language": "ar", "match": "True", "pairID": "2", "promptID": "1", "sentence1": "\u0648\u0642\u0627\u0644\u060c \u0645\u0627\u0645\u0627\u060c \u0644\u0642\u062f \u0639\u062f\u062a \u0644\u0644\u0645\u0646\u0632\u0644.", "sentence1_tokenized": "\u0648\u0642\u0627\u0644 \u060c \u0645\u0627\u0645\u0627 \u060c \u0644\u0642\u062f \u0639\u062f\u062a \u0644\u0644\u0645\u0646\u0632\u0644 .", "sentence2": "\u0644\u0645 \u064a\u0646\u0637\u0642 \u0628\u0628\u0646\u062a \u0634\u0641\u0629.", "sentence2_tokenized": "\u0644\u0645 \u064a\u0646\u0637\u0642 \u0628\u0628\u0646\u062a \u0634\u0641\u0629 ."}
SQuAD数据集
- 官网地址:https://rajpurkar.github.io/SQuAD-explorer/
- 下载地址:https://rajpurkar.github.io/SQuAD-explorer/
- 注意事项:测试集没有给出,需要在官网提交模型由平台对模型进行测试集的跑分
- 数据格式:点击https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
数据由多篇文章组成
一个title就表示一篇文章
文章里由paragraphs组成
paragraphs由多个context组成
每一个context有answers和question
部分数据:
{"data": [{"title": "Super_Bowl_50","paragraphs": [{"context": "Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24\u201310 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the \"golden anniversary\" with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game would have been known as \"Super Bowl L\"), so that the logo could prominently feature the Arabic numerals 50.","qas": [{"answers": [{"answer_start": 177,"text": "Denver Broncos"}, {"answer_start": 177,"text": "Denver Broncos"}, {"answer_start": 177,"text": "Denver Broncos"}],"question": "Which NFL team represented the AFC at Super Bowl 50?","id": "56be4db0acb8001400a502ec"}, {"answers": [{"answer_start": 249,"text": "Carolina Panthers"}, {"answer_start": 249,"text": "Carolina Panthers"}, {"answer_start": 249,"text": "Carolina Panthers"}],"question": "Which NFL team represented the NFC at Super Bowl 50?","id": "56be4db0acb8001400a502ed"}, {"answers": [{"answer_start": 403,"text": "Santa Clara, California"}, {"answer_start": 355,"text": "Levi's Stadium"}, {"answer_start": 355,"text": "Levi's Stadium in the San Francisco Bay Area at Santa Clara, California."}],"question": "Where did Super Bowl 50 take place?","id": "56be4db0acb8001400a502ee"}, {"answers": [{"answer_start": 177,"text": "Denver Broncos"}, {"answer_start": 177,"text": "Denver Broncos"}, {"answer_start": 177,"text": "Denver Broncos"}],"question": "Which NFL team won Super Bowl 50?","id": "56be4db0acb8001400a502ef"}, {"answers": [{"answer_start": 488,"text": "gold"}, {"answer_start": 488,"text": "gold"}, {"answer_start": 521,"text": "gold"}],"question": "What color was used to emphasize the 50th anniversary of the Super Bowl?","id": "56be4db0acb8001400a502f0"}
相关文章:
python-NLP常用数据集0.1.012
XNLI数据集 用户语言翻译和跨语言分类的语料库 官网地址:https://github.com/facebookresearch/XNLI下载地址:https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip注意事项:数据集有json格式的,和txt格式的数据格式 txt格式 la…...
【大事件】docker可能无法使用了
今天本想继续学习docker的命令,突然发现官方网站的文档页面打不开了。 难道是被墙了? 我用同事的翻了一下,能进,果然! 正好手头的工作告一段落,将代码上传,然后通过jenkins将服务器自动部署到…...
探索Linux中的gzip命令:压缩与解压缩的艺术
探索Linux中的gzip命令:压缩与解压缩的艺术 在Linux世界中,文件压缩和解压缩是日常任务中不可或缺的一部分。gzip命令是这些任务中的佼佼者,它提供了高效的压缩和解压缩功能,广泛应用于各种场景。本文将带您深入了解gzip命令的工…...
Shell 输入/输出重定向
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝Ὁ…...
为什么RPC要比Http高效?
RPC和HTTP RPC(Remote Procedure Call)基于TCP连接通常比HTTP在性能上要高很多,原因如下: 1. 协议开销 HTTP开销: HTTP协议报文头部相对较大,包含大量的元数据(如方法、URI、头字段等&#x…...
局域网电脑监控软件是如何监控到内网电脑的?
在信息化快速发展的今天,局域网电脑监控软件成为许多企业、学校和机构重要的实用工具。这些软件的主要功能在于对局域网内的电脑进行实时监控,以确保网络的安全、员工的工作效率以及合规性。那么,局域网电脑监控软件是如何做到对内网电脑进行…...
精妙无比的App UI 风格
精妙无比的App UI 风格...
SQL优化系列-快速学会分析SQL执行效率(下)
1 show profile 分析慢查询 有时需要确定 SQL 到底慢在哪个环节,此时 explain 可能不好确定。在 MySQL 数据库中,通过 profile,能够更清楚地了解 SQL 执行过程的资源使用情况,能让我们知道到底慢在哪个环节。 知识扩展࿱…...
交流非线性RCD负载的核心功能
非线性RCD负载是一种广泛应用于电力系统中的电子元件,主要用于保护电路免受过电压和欠电压的影响。它的核心功能主要包括以下几个方面: 1. 过电压保护:当电路中的电压超过设定值时,非线性RCD负载会自动断开电路,防止电…...
英语学习笔记31——Where‘s Sally?
Where’s Sally? Sally在哪? 词汇 Vocabulary garden /ˈɡɑːrdn/ n. 花园,院子(属于私人) 区别:park n. 公园(公共的) 例句:我的花园非常大。 My garden is very big. 搭…...
【Unity脚本】使用脚本操作游戏对象的组件
【知识链】Unity -> Unity脚本 -> 游戏对象 -> 组件 【知识链】Unity -> Unity界面 -> Inspector【摘要】本文介绍如何使用脚本添加、删除组件,以及如何访问组件 文章目录 引言第一章 游戏对象与组件1.1 什么是组件?1.2 场景、游戏对象与…...
学习VUE3——组件(一)
组件注册 分为全局注册和局部注册两种。 全局注册: 在main.js或main.ts中,使用 Vue 应用实例的 .component() 方法,让组件在当前 Vue 应用中全局可用。 import { createApp } from vue import MyComponent from ./App.vueconst app crea…...
2024-6-6 石群电路-25
2024-6-6,星期四,15:56,天气:晴,心情:晴。今天又是阳光明媚的一天打印了毕业论文,准备了一些毕业&答辩的材料,感觉离毕业越来越近了,加油学习喽~ 今日观看了石群老师…...
vue 文件预览mp4、txt、pptx、xls、xlsx、docx、pdf、html、xml
vue 文件预览 图片、mp4、txt、pptx、xls、xlsx、docx、pdf、html、xml 最近公司要做一个类似电脑文件夹的功能,支持文件夹操作,文件操作,这里就不说文件夹操作了,说说文件预览操作,本人是后端java开发,前端vue&#…...
生活中优秀学习习惯
早起: 23点睡--4至6点起床(睡足7、8个钟头),起来第一件事是工作(或学习)。不是吃早餐,不是刷牙。(空腹工作一段时间)--做推理让头脑运作,不要背书࿰…...
什么是负载均衡?在网络中如何实现?
负载均衡(Load Balancing)是一种网络技术,用于将网络请求或数据传输任务分发到多个服务器或处理单元上,以实现更高效的资源利用、更高的处理能力和更好的系统可靠性。负载均衡的目标是优化资源使用、最大化吞吐量、减少响应时间&a…...
【YOLOv10改进[Backbone]】图像修复网络AirNet助力YOLOv10目标检测效果 + 含全部代码和详细修改方式 + 手撕结构图 + 全网首发
本文带来的是图像复原网络AirNet,它由基于对比度的退化编码器( CBDE )和退化引导的恢复网络( DGRN )两个模块组成。可以在一个网络中恢复各种退化图像。AirNet不受损坏类型和级别的先验限制,仅使用观察到的损坏图像进行推理。本文中将使用图像修复网络AirNet助力YOLOv10的目标…...
ubuntu22.04 gitleb服务器满了,扩容机器的磁盘的详细步骤
在Ubuntu 22.04上为GitLab服务器扩容磁盘可以分为以下几步进行:增加磁盘空间、扩展文件系统,并确保数据安全。这些步骤可以应用于物理服务器或虚拟机(包括云服务中的实例)。以下是详细步骤: 1. 添加新的磁盘空间 1.1…...
kafka-集群-主题创建
文章目录 1、集群主题创建1.1、查看 efak1.2、创建 主题 my_topic1 并建立6个分区并给每个分区建立3个副本1.2.1、查看 my_topic1 的详细信息 1.3、停止 kafka-01实例,端口号为 9095 1、集群主题创建 1.1、查看 efak 已经有三个kafka实例 1.2、创建 主题 my_topic1…...
Python 连接 MySQL 及 SQL增删改查(主要使用sqlalchemy)
一、环境 工作中需要用到python和mysql数据库,本次文档记录相关操作。 环境:windows10、python 3.11.7 mysql版本:5.7 二、MySQL的连接和使用 本人使用过的两种方式 2.1方式一:sql为主 2.1.1创建连接 import sqlalchemy fro…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
