当前位置: 首页 > news >正文

通用树查找算法

        想要一个树形控件来显示数据,却发现Racket的GUI库竟然没有提供这个控件。既然没有,那就自己手搓一个吧。没想到,在做这个控件中竟然有了新发现!

        树形控件有一个功能是查找树中指定的节点。这就是接下来的故事的起点。

1 找外援

        不想动脑筋,就找网络,网上一般都是二叉树、红黑树啥的,不是我需要的;找AI帮我写一个,如下:

问:用Racket写一个通用的树查找算法。

AI答:

以下是使用Racket编写的通用树查找算法:

#lang racket
(define (tree? x)
  (and (pair? x) (not (null? x))))
(define (search-tree t target)
  (cond ((null? t) #f)
        ((equal? (car t) target) t)
        (else (+ 1 (search-tree (cdr t) target)))))
(define tree
  '(("A" "B" "C") ("D" "E" "F") ("G" "H" "I")))
(displayln "Tree:")
(tree-walk tree tree-root tree)
(displayln "Search for 'D':")
(search-tree tree 'D)

        这个程序定义了一个辅助函数 ‘tree?‘,用于检查一个值是否为树。然后,它定义了 ‘search-tree‘ 函数,该函数接受一个树和目标值作为参数,并返回找到的目标节点或 "#f"(表示未找到)。最后,它创建了一个名为“tree”的示例树,并使用“tree-walk”函数遍历它。然后,它在树中搜索目标值“D”,并将结果打印到控制台上。

显然,AI也不是救世主!还是开动自己的思想解决问题吧。

2 我的思考

         树的根节点、子节点、叶子节点的处理属于基本操作,不用过多考虑。重点是不确定的子节点数量,如何处理?

        以下是一个通用树节点的结构:

;树节点结构:
(struct node
(id ;这里设定id值为数字。
 value ;节点值。
 children ;子节点,考虑用列表来存放。
 ))

        我实际要使用的树节点比这个要复杂一些,这里我就把这个结构来凑合作为例子样本吧。

        如上面所说,重点就是children这个列表了。一般会考虑采用"for-each"遍历列表元素,然后用递归方式对每个元素的children继续以上过程,直到找到需要的值或遍历整个树为止。

        但这样有一个严重的问题,这样的每次递归都会出现等待下一级递归结束后才能继续列表元素处理的问题,就会出现著名的低效递归的问题——因为这样递归在执行时需要系统提供隐式栈来实现递归,造成效率低效,甚至填满内存的严重问题(当然现在内存一般足够大,还不至于因内存溢出造成崩溃)。

        解决办法是采用尾递归。难点还是在children列表上。

        我找到一个办法——将列表与树结合起来进行尾递归,算法原理如下。

3 算法原理

        假设我们有一个查找函数"find-node",其参数有两个——"tree"为要查找的树;"id"为查找的关键值。

        在"find-node"中定义一个闭包"find-node/in",它来实现树的遍历查找,这也是常规操作。

        为了实现尾递归,为"find-node/in"设定一个参数nodes作为存放树节点的子节点的列表(根节点是这个列表参数的初始值)。然后挨个搜索树的各个节点,如果遇到节点有子节点时,就把这个节点的children添加到nodes的后面。这样就把对树的搜索和对子节点列表的遍历转换为对列表nodes的遍历,处理起来就异常简单了。关键是,复杂度也很理想,这个最后分析。

具体算    法描述如下:

  1. 首先,nodes为包含节点的列表。

  2. 初始时nodes里仅包含根节点。

  3. 如果nodes列表为空,返回#f;

  4. 如果nodes列表不为空,取列表首值(节点):

  5. 如果该值是指定节点,返回该节点;

  6. 如果该值不是指定节点,检查其子节点:

  7. 如果有子节点,将子节点加入到nodes列表里,并重复3-6对nodes向后搜索;

  8. 如果没有子节点,重复3-6对nodes向后搜索。

        注意,以上算法描述中还需要考虑一个特例,就是根节点不存在(一般设置为"#f")时的情况。为了处理这个特例,我们在取出列表首值后首先对其做一个判断——是否为未设置节点值的根节点。

4 实现树查找

        根据上边的算法原理,我们把代码写出来,如下:

;定义取得节点值函数:
;tree为需要搜索的树,id为节点标识。
(define (find-node-version-1 tree id)
  (define (find-node/in nodes)
    (cond
      ;nodes列表为空,返回#f:
      [(empty? nodes) #f]
      ;值(节点)#f,即树根未初始化,树不存在:
      [(not (car nodes)) #f]
      ;nodes列表首值(节点)即为指定节点,返回节点:
      [(= (node-id (car nodes)) id)
       ;(display-node-value (car nodes))
       (car nodes)]
      ;如果nodes首值不是指定节点,且其子列表为空:
      [(empty? (node-children (car nodes)))
       ;(display-node-value (car nodes))
       (find-node/in (cdr nodes))]
      [else
       ;(display-node-value (car nodes))
       (find-node/in
        (append (cdr nodes)
                (node-children (car nodes))))]))
  (find-node/in (list tree)))

5 测试

        现在手搓一棵树并放到测试模块中来做测试。如下:

(module+ test
  ;测试空树:
  (define tree/empty #f)
  (find-node tree/empty 3)
  ;测试自定义树:
  (define tree/user
    (node 0 "t-0" (list (node 1 "t-1" '())
                        (node 2 "t-2" (list (node 3 "t-3" (list (node 4 "t-4" '())))
                                            (node 5 "t-5" '())
                                            (node 6 "t-6" (list (node 7 "t-7" '())
                                                                (node 8 "t-8" '())))))
                        (node 9 "t-9" (list (node 10 "t-10" (list (node 11 "t-11" '())))
                                            (node 12 "t-12" '())))
                        (node 13 "t-13" (list (node 14 "t-14" (list (node 15 "t-15" (list (node 16 "t-16" '()))))))))))
  (let* ([id 13]
         [n (find-node-version-1 tree/user id)])
    (display (format "查找结果为:id=~a,value=”~a“\n" id (node-value n))))
  )

这棵树如果在手机这种移动设备上看可能有点乱。如果用图片显示应该是这样的:

        运行程序,得到的结果是:

        查找结果为:id=13,value=”t-13“

6 检查搜索路径

        我们来看看程序的搜索路径。

        为了实现这个功能,我再定义一个显示函数,以便显示出程序搜索的每一个节点情况。如下:

;显示节点值(用于测试):
(define (display-node-value node)
  (display
   (format "id=~a,value=”~a“\n"
           (node-id node)
           (node-value node))))

        也就是上边程序中被注释掉的函数。现在我们把它的注释去掉。再运行程序,得到以下结果:

        id=0,value=”t-0“

        id=1,value=”t-1“

        id=2,value=”t-2“

        id=9,value=”t-9“

        id=13,value=”t-13“

        哦,这不是遍历树的广度优先算法吗!这的确是遍历树的广度优先算法。

        我们可以把这个算法独立出来用单独函数表示。如下:

;广度优先搜索:
(define (find-node/width nodes id)
  (cond
    ;nodes列表为空,返回#f:
    [(empty? nodes) #f]
    ;值(节点)#f,即树根未初始化,树不存在:
    [(not (car nodes)) #f]
    ;nodes列表首值(节点)即为指定节点,返回节点:
    [(= (node-id (car nodes)) id)
     ;(display-node-value (car nodes))
     (car nodes)]
    ;如果nodes首值不是指定节点,且其子列表为空:
    [(empty? (node-children (car nodes)))
     ;(display-node-value (car nodes))
     (find-node/width (cdr nodes) id)]
    [else
     ;(display-node-value (car nodes))
     (find-node/width
      (append (cdr nodes)
              (node-children (car nodes)))
      id)]))

相应地,查找函数就表示为:

;定义取得节点值函数:
;tree为需要搜索的树,id为节点标识。
(define (find-node tree id)
  ;广度优先搜索指定节点:
  (display (format "广度优先搜索指定节点:\n"))
  (find-node/width (list tree) id))

        在测试模块中添加如下测试代码:

(let* ([id 13]
       [n (find-node tree/user id)])
    (display (format "查找结果为:id=~a,value=”~a“\n" id (node-value n))))

        运行程序,结果如下:

        广度优先搜索指定节点:

        id=0,value=”t-0“

        id=1,value=”t-1“

        id=2,value=”t-2“

        id=9,value=”t-9“

        id=13,value=”t-13“

        与上边一样的结果。

        那么问题来了,如果要实现深度优先算法,怎么做呢?

7 深度优先算法

        从上边的算法原理来理解,如果在将子节点与现有nodes列表合并时,不是将子节点放到nodes列表之后,而是放到nodes列表之前——也就是说优先搜索子节点内容——就可以实现深度优先算法了。实现如下:

;深度优先搜索:
(define (find-node/depth nodes id)
  (cond
    ;nodes列表为空,返回#f:
    [(empty? nodes) #f]
    ;值(节点)#f,即树根未初始化,树不存在:
    [(not (car nodes)) #f]
    ;nodes列表首值(节点)即为指定节点,返回节点:
    [(= (node-id (car nodes)) id)
     ;(display-node-value (car nodes))
     (car nodes)]
    ;如果nodes首值不是指定节点,且其子列表为空:
    [(empty? (node-children (car nodes)))
     ;(display-node-value (car nodes))
     (find-node/depth (cdr nodes) id)]
    [else
     ;(display-node-value (car nodes))
     (find-node/depth
      (append (node-children (car nodes))
              (cdr nodes))
      id)]))

        把深度优先算法添加到"find-node"函数中,如下:

;定义取得节点值函数:
;tree为需要搜索的树,id为节点标识。
(define (find-node tree id)
  ;广度优先搜索指定节点:
  (display (format "广度优先搜索指定节点:\n"))
  (find-node/width (list tree) id)
  ;深度优先搜索指定节点:
  (display (format "深度优先搜索指定节点:\n"))
  (find-node/depth (list tree) id))

        运行程序,得到如下结果:

广度优先搜索指定节点:

id=0,value=”t-0“

id=1,value=”t-1“

id=2,value=”t-2“

id=9,value=”t-9“

id=13,value=”t-13“

深度优先搜索指定节点:

id=0,value=”t-0“

id=1,value=”t-1“

id=2,value=”t-2“

id=3,value=”t-3“

id=4,value=”t-4“

id=5,value=”t-5“

id=6,value=”t-6“

id=7,value=”t-7“

id=8,value=”t-8“

id=9,value=”t-9“

id=10,value=”t-10“

id=11,value=”t-11“

id=12,value=”t-12“

id=13,value=”t-13

        从上边的运行结果来看,广度优先算法比深度优先算法更快找到了指定的节点。当然,仅是对于这里给的数据样本及指定的id来说的。比如,如果id=8,运行结果就会出现深度优先算法更快找到结果的情况。

8 时间复杂度与空间复杂度

        从以上分析和运行情况可以直观看出,本查找算法的时间复杂度与空间复杂度均为O(n),而且是稳定算法。

           注:以上内容采用Racket语言的Scribble编辑并编译生成。

相关文章:

通用树查找算法

想要一个树形控件来显示数据,却发现Racket的GUI库竟然没有提供这个控件。既然没有,那就自己手搓一个吧。没想到,在做这个控件中竟然有了新发现! 树形控件有一个功能是查找树中指定的节点。这就是接下来的故事的起点。 1 找外援 不…...

Flutter 中的 TableCell 小部件:全面指南

Flutter 中的 TableCell 小部件:全面指南 Flutter 是一个功能强大的 UI 框架,由 Google 开发,允许开发者使用 Dart 语言构建跨平台的移动、Web 和桌面应用。在 Flutter 的丰富组件库中,TableCell 是一个用于创建表格单元格的组件…...

clickhouse学习笔记(一)入门与安装

目录 一 、入门 简介 核心特性包括 1.1 列式存储 1.2 原生压缩 1.3 向量化执行引擎 1.4 DBMS 功能 1.5 分布式处理 1.6 高吞吐写入能力 1.7 实时分析 1.8 SQL支持 1.9 高度可扩展 1.10 数据分区与线程级并行 1.11 应用场景 1.12 不适用场景 二、ClickHouse单机版…...

【JavaEE精炼宝库】多线程(4)深度理解死锁、内存可见性、volatile关键字、wait、notify

目录 一、死锁 1.1 出现死锁的常见场景: 1.2 产生死锁的后果: 1.3 如何避免死锁: 二、内存可见性 2.1 由内存可见性产生的经典案例: 2.2 volatile 关键字: 2.2.1 volatile 用法: 2.2.2 volatile 不…...

使用Ollama+OpenWebUI部署和使用Phi-3微软AI大模型完整指南

🏡作者主页: 点击! 🤖AI大模型部署与应用专栏:点击! ⏰️创作时间:2024年6月6日23点50分 🀄️文章质量:96分 欢迎来到Phi-3模型的奇妙世界!Phi-3是由微软…...

k8s的ci/cd实践之旅

书接上回k8s集群搭建完毕,来使用它强大的扩缩容能力帮我们进行应用的持续集成和持续部署,整体的机器规划如下: 1.192.168.8.156 搭建gitlab私服 docker pull gitlab/gitlab-ce:latest docker run --detach --hostname 192.168.8.156 --publ…...

笔记96:前馈控制 + 航向误差

1. 回顾 对于一个 系统而言,结构可以画作: 如果采用 这样的控制策略,结构可以画作:(这就是LQR控制) 使用LQR控制器,可以通过公式 和 构建一个完美的负反馈系统; a a 但是有上…...

延时任务工具类

自定义工具类 package com.sxfoundation.task;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.core.task.TaskRejectedException; import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler; import org.spri…...

springboot下载grpc编译文件,报错缺少protoc-gen-grpc-java:1.34.1:exe不存在

报错如图所示 [ERROR] Then, install it using the command: [ERROR] mvn install:install-file -DgroupIdio.grpc -DartifactIdprotoc-gen-grpc-java -Dversion1.34.1 -Dclassifierwindows-x86_64 -Dpackagingexe -Dfile/path/to/file [ERROR] [ERROR] Alternatively, if yo…...

【面试干货】 非关系型数据库(NoSQL)与 关系型数据库(RDBMS)的比较

【面试干货】 非关系型数据库(NoSQL)与 关系型数据库(RDBMS)的比较 一、引言二、非关系型数据库(NoSQL)2.1 优势 三、关系型数据库(RDBMS)3.1 优势 四、结论 💖The Begin…...

JAVA学习-练习试用Java实现“简化路径”

问题: 给定一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请将其转化为更加简洁的规范路径。 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身…...

STM32——ADC篇(ADC的使用)

一、ADC的介绍 1.1什么是ADC ADC(Analogto-Digital Converter)模拟数字转换器,是将模拟信号转换成数字信号的一种外设。比如某一个电阻两端的是一个模拟信号,单片机无法直接采集,此时需要ADC先将短租两端的电…...

(文章复现)基于主从博弈的售电商多元零售套餐设计与多级市场购电策略

参考文献: [1]潘虹锦,高红均,杨艳红,等.基于主从博弈的售电商多元零售套餐设计与多级市场购电策略[J].中国电机工程学报,2022,42(13):4785-4800. 1.摘要 随着电力市场改革的发展,如何制定吸引用户选择的多类型零售套餐成为提升售电商利润的研究重点。为…...

深度评价GPT-4o:探索人工智能的新里程碑

在人工智能领域,OpenAI的GPT系列自推出以来就备受瞩目。GPT-4o作为该系列的最新版本,无疑是迄今为止最为强大的一代。它不仅在技术性能上有了质的飞跃,而且在应用的广泛性和深度上都展现出了惊人的潜力。本文将从版本对比、技术能力、使用体验…...

Linux命令篇(六):vi/vim专项

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝您生活愉快! 文章目录 一、什么是vim二…...

Java 还能不能继续搞了?

金三银四招聘季已落幕,虽说行情不是很乐观,但真正的强者从不抱怨。 在此期间,我收到众多小伙伴的宝贵反馈,整理出132道面试题,从基础到高级,有八股文,也有对某个知识点的深度解析。包括以下几部…...

【日记】遇到了一个很奇怪的大爷(845 字)

正文 花了昨天和今天两天时间,把数据转移完了。这块 2T 的硬盘可以光荣退休了。目前是没什么存储焦虑了。 农发行净开发一些垃圾系统。今天没什么业务,但跟 ActiveX 斗智斗勇了一整天,最后实在搞不过 IE 浏览器。我也懒得管了,又不…...

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 目录 Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 一、简单介绍 二、处理文本数据 三、用…...

GAT1399协议分析(10)--视频定义及解析

一、官方定义 二、字段解析 VideoID 类型BasicObjectID 解析参考GAT1399协议分析(8)--ImageInfo字段详解-CSDN博客 InfoKind 采集类型...

【C语言】学生管理系统:完整模拟与实现

🌈个人主页:是店小二呀 🌈C语言笔记专栏:C语言笔记 🌈C笔记专栏: C笔记 🌈喜欢的诗句:无人扶我青云志 我自踏雪至山巅 🔥引言 本篇文章为修改了在校期间实训报告,使用C…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...