C语言详解(动态内存管理)1
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~
💥💥个人主页:奋斗的小羊
💥💥所属专栏:C语言
🚀本系列文章为个人学习笔记,在这里撰写成文一为巩固知识,二为展示我的学习过程及理解。文笔、排版拙劣,望见谅。
目录
- 前言
- 1、为什么要有动态内存分配
- 2、malloc 和 free
- 2.1 malloc
- 2.2 free
- 3、calloc 和 realloc
- 3.1 calloc
- 3.2 realloc
- 总结
前言
本篇文章将介绍C语言中除指针和结构体外又一重要的内容——动态内存管理
在C语言中,我们更多的需要手动分配和释放内存,这意味着我们必须正确地管理内存,以避免内存泄漏、内存溢出和其他内存错误,这些错误可能导致程序崩溃或安全漏洞。因此,了解内存管理是编写高质量、高效率和健壮性程序的重要部分。
1、为什么要有动态内存分配
目前我们申请内存的方法有两种,创建相关类型变量int n = 0;
和创建相关类型数组int arr[10] = { 0 };
但是这样申请的内存是有缺点的:
-
申请的内存大小是有限的,不能指定大小
-
数组在声明的时候必须指定长度,数组空间一旦确定下来就不能调整
-
数组空间在申请前我们不能给出一个准确的大小,大了浪费,小了不够
有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了
为了解决这个问题,C语言引入了动态内存开辟,让我们可以自己申请和释放内存,这样就比较灵活了
空间不够我们可以增大,空间太大我们可以缩小
2、malloc 和 free
使用动态内存管理函数都需要包含头文件
<stdlib.h>
2.1 malloc
C语言提供了一个动态内存开辟的函数malloc
void* malloc(size_t size);
malloc
函数的作用是开辟一块指定大小的、连续的、有限的内存空间,大小由size
决定,是不能开辟无限空间的
在x86环境下开辟一块超大内存空间,若开辟失败打印出失败原因:
#include <stdio.h>
#include <stdlib.h>int main()
{int* p = (int*)malloc(INT_MAX);//INT_MAX=2147483647if (p == NULL){//空间开辟失败perror("malloc");//失败后用return终止程序return 1;}return 0;
}
对于
malloc
函数,我们需要注意:
- 参数的单位是字节
- 如果
size
是0,malloc
的行为是未定义的,取决于编译器 malloc
的返回值是void *
类型的指针- 申请空间成功的话返回起始地址,反之则返回
NULL
malloc
返回的地址我们基本都会直接强转为我们需要的类型的地址
示例:申请10个整形空间,存入1~10
#include <stdio.h>
#include <stdlib.h>int main()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){//空间开辟失败perror("malloc");//失败后用return终止程序return 1;}//可以使用开辟好的空间int i = 0;for (i = 0; i < 10; i++){*(p + i) = i + 1;}return 0;
}
malloc
申请的空间和数组有什么区别?
- 动态内存的大小可以调整
- 空间开辟的位置不一样
我们创建的局部数组就在栈区
虽然空间有区别,但在使用上是一样的
2.2 free
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,malloc
和free
基本都要成对存在,函数原型如下:
void free(void* ptr);
free
函数是用来释放开辟的动态内存的,我们将上面开辟的动态内存释放:
#include <stdio.h>
#include <stdlib.h>int main()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){//空间开辟失败perror("malloc");//失败后用return终止程序return 1;}//可以使用开辟好的空间int i = 0;for (i = 0; i < 10; i++){*(p + i) = i + 1;}//将开辟的动态内存释放free(p);p = NULL;return 0;
}
注意:用free
释放动态内存空间后,指针p中还保留着其地址,安全起见我们需要给指针p赋NULL
,因此free(p)
和p = NULL
总是一起出现的
既然有free
函数,所以说明动态内存是不能自动回收的,所以malloc
申请的空间和数组又有了一个区别:
数组在进它的作用域时申请空间,出作用域时自动释放空间;而
malloc
申请的动态内存空间需要我们手动地释放
如果不释放,程序结束的时候也会被系统自动回收,但是并不建议这样做,自己申请的空间要自己释放,不然会浪费资源,也是不负责任的行为
特别的:
- 如果参数
ptr
指向的空间不是动态开辟的,free
的行为是未定义的 - 如果参数
ptr
是NULL
指针,则free
什么都不做
3、calloc 和 realloc
3.1 calloc
C语言还提供了一个函数calloc,其函数原型是:
void* calloc( size_t num, size_t size );
calloc
的作用是开辟num
个大小为size
的连续空间,同时将内存空间初始化为0
用 calloc
申请10个整型的空间,并打印出内存中的值:
#include <stdio.h>
#include <stdlib.h>int main()
{//int* p = (int*)malloc(10 * sizeof(int));int* p = (int*)calloc(10, sizeof(int));if (p == NULL){//空间开辟失败perror("calloc");//失败后用return终止程序return 1;}//可以使用开辟好的空间int i = 0;for (i = 0; i < 10; i++){printf("%d ", p[i]);//*(p + i)}//将开辟的动态内存释放free(p);p = NULL;return 0;
}
如果将malloc
申请的动态内存空间中的值打印出来,应该都是随机值:
所以malloc
和calloc
只两个区别:
malloc
有1个参数,而calloc
有2个参数calloc
会把申请的动态内存空间内的值初始化为全0,而malloc
不会
3.2 realloc
在文章开头我们提到了,有时在定义数组的时候我们并不能给定数组一个准确的长度,大了浪费,小了不够。
而realloc函数的出现让动态内存管理更加灵活,它的作用是调整动态内存空间的大小,原型如下:
void *realloc( void *ptr, size_t new_size );
ptr
:指向之前通过malloc
、calloc
、realloc
开辟的内存块(必须是起始地址)new_size
:内存新大小(单位字节)- 返回值
void *
:调整后的内存起始地址,若失败则返回空指针
当我们想用realloc
函数将一个动态内存空间调整的小一点,则相应的动态内存空间就会减小到我们想要的大小;而当我们想用realloc
函数将一个动态内存空间调整的大一点,这时候就会有两种情况出现:
情况一:原内存后的可用空间足够
我们的扩容
这时候realloc
函数就会按正常程序走,返回原内存的起始地址
情况二:原内存后的可用空间不够
我们扩容
这时候realloc
函数会在堆区中找一块足以完成我们目的的内存空间,并将原内存中的内容拷贝到新内存空间中,realloc
函数还会自己将原内存空间释放,最后返回新开辟的内存空间的起始地址
当然,不管我们是想将原内存空间调小还是扩容,都有失败的可能
所以,realloc
函数的返回值我们不能直接用指向原内存的指针接收,因为如果realloc
返回的是NULL
,则原内存的地址都会消失
我们可以用一个新指针过渡
#include <stdio.h>
#include <stdlib.h>int main()
{//int* p = (int*)malloc(10 * sizeof(int));int* p = (int*)calloc(10, sizeof(int));if (p == NULL){//空间开辟失败perror("calloc");//失败后用return终止程序return 1;}//可以使用开辟好的空间int i = 0;for (i = 0; i < 10; i++){printf("%d ", p[i]);//*(p + i)}//调整空间,扩容到20个整型空间int* ptr = (int*)realloc(p, 20 * sizeof(int));//用新指针过渡if (ptr != NULL){p = ptr;}//使用// ...//将开辟的动态内存释放free(p);p = NULL;return 0;
}
总结
- 动态内存管理通过使用
malloc
、calloc
和realloc
等函数来分配内存,使用free
函数来释放已经分配的内存。- 动态内存管理能够优化程序的内存利用率,避免内存泄漏和内存溢出等问题,在C语言中,动态内存管理是我们必须掌握的重要技能之一
相关文章:

C语言详解(动态内存管理)1
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...

106.网络游戏逆向分析与漏洞攻防-装备系统数据分析-在UI中显示装备与技能信息
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 如果看不懂、不知道现在做的什么,那就跟着做完看效果,代码看不懂是正常的,只要会抄就行,抄着抄着就能懂了 内容…...

AWS EMR Serverless
AWS概述 EMR Serverless 简介 在AWS概述一文中简单介绍过AWS EMR, 它是AWS提供的云端大数据平台。借助EMR可以设置集群以便在几分钟内使用大数据框架处理和分析数据。创建集群可参考官方文档:Amazon EMR 入门。但集群创建之后需要一直运行,用户需要管理…...

Java面试题:Redis持久化问题
Redis持久化问题 RDB (Redis Database Backup File) Redis数据快照 将内存中的所有数据都记录到磁盘中做快照 当Redis实例故障重启时,从磁盘读取快照文件恢复数据 使用 save/bgsave命令进行手动快照 save使用主进程执行RDB,对所有命令都进行阻塞 bgsave使用子进程执行R…...

【Java】解决Java报错:ClassCastException
文章目录 引言1. 错误详解2. 常见的出错场景2.1 错误的类型转换2.2 泛型集合中的类型转换2.3 自定义类和接口转换 3. 解决方案3.1 使用 instanceof 检查类型3.2 使用泛型3.3 避免不必要的类型转换 4. 预防措施4.1 使用泛型和注解4.2 编写防御性代码4.3 使用注解和检查工具 5. 示…...

OpenCV-最小外接圆cv::minEnclosingCircle
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 函数原型 void minEnclosingCircle(InputArray points, Point2f& center, float& radius); 参数说明 InputArray类型的…...

大小堆运用巧解数据流的中位数
一、思路 我们将所有数据平分成两份,前面那一部分用小堆来存,后面的部分用大堆来存,这样我们就能立刻拿到中间位置的值。 如果是奇数个数字,那么我们就将把中间值放在前面的大堆里,所以会有两种…...
AI能力边界不断扩展,将对国家安全产生深远影响
文 | 中国信息安全测评中心 王欣 随着 ChatGPT 的发布及相关应用的落地,人工智能技术给全球各个行业带来了一波又一波冲击。GPT-4 多模态大型语言模型更是将人工智能的能力提升到新的高度,无论从技术先进性还是应用实践能力来看,此模型均可被…...

【UnityShader入门精要学习笔记】第十六章 Unity中的渲染优化技术 (上)
本系列为作者学习UnityShader入门精要而作的笔记,内容将包括: 书本中句子照抄 个人批注项目源码一堆新手会犯的错误潜在的太监断更,有始无终 我的GitHub仓库 总之适用于同样开始学习Shader的同学们进行有取舍的参考。 文章目录 移动平台上…...

GPT-4o:免费且更快的模型
OpenAI GPT-4o 公告 OpenAI 推出了增强版 GPT-4 模型——OpenAI GPT-4o,用于支持 ChatGPT。首席技术官 Mira Murati 表示,更新后的模型速度更快,并在文本、视觉和音频处理方面有了显著提升。GPT-4o 将免费向所有用户开放,付费用户…...

docker部署fastdfs
我的镜像包地址 链接:https://pan.baidu.com/s/1j5E5O1xdyQVfJhsOevXvYg?pwdhcav 提取码:hcav docker load -i gofast.tar.gz拉取gofast docker pull sjqzhang/go-fastdfs启动gofast docker run -d --name fastdfs -p 8080:8080 -v /opt/lijia/lijia…...
【劲舞团game】
编写《劲舞团》这样的游戏代码是一个复杂的过程,涉及到游戏引擎的使用、图形渲染、物理模拟、音频处理、网络通信等多个方面。以下是一个非常简化的步骤,用于说明如何开始编写一个基于Unity引擎的简单舞蹈游戏: 1. 准备开发环境 下载并安装…...
Day15—图像爬虫与简单处理
图像爬虫是一种专门用于从互联网上下载图像的网络爬虫。除了文本内容,图像也是网站中的重要组成部分,它们可以用于多种目的,如图像识别、内容分析、数据备份等。 环境准备 首先,确保你的环境中已安装Python和必要的库。如果没有安装Pillow库,可以通过以下命令安装:pip in…...

Rust基础学习-Rust中的文件操作
文件结构 在Rust中,std::fs::File 结构体代表一个文件。它允许我们对文件执行读/写操作。文件 I/O 是通过提供与文件系统交互的功能的 std::fs 模块执行的。 File 结构体中的所有方法都返回std::io::Result的变体,或者简单地是 Result 枚举。这里会涉及…...

Activator.CreateInstance 与 Type.InvokeMember的区别
文章目录 一、使用 Activator.CreateInstance 创建实例1、使用 Activator.CreateInstance 的优点和缺点2、使用 Activator.CreateInstance 的代码示例 二、使用 Type.InvokeMember 创建实例1、使用 Type.InvokeMember 的优点和缺点2、使用 Type.InvokeMember 的代码示例 三、Ac…...

Java18+App端采用uniapp+开发工具 idea hbuilder智能上门家政系统源码,一站式家政服务平台开发家政服务
Java18App端采用uniapp开发工具 idea hbuilder智能上门家政系统源码,一站式家政服务平台开发 家政服务 家政服务是一个专为家政服务人员设计的平台,该平台旨在提供便捷、高效的工作机会,同时确保服务质量和客户体验。 以下是关于家政服务师…...
【MySQL】探索 MySQL 的 GROUP_CONCAT 函数
缘分让我们相遇乱世以外 命运却要我们危难中相爱 也许未来遥远在光年之外 我愿守候未知里为你等待 我没想到为了你我能疯狂到 山崩海啸没有你根本不想逃 我的大脑为了你已经疯狂到 脉搏心跳没有你根本不重要 🎵 邓紫棋《光年之外》 什么是 GRO…...

SpringBoot整合RabbitMQ (持续更新中)
RabbitMQ 官网地址:RabbitMQ: One broker to queue them all | RabbitMQ RabbitMQ 与 Erlang 版本兼容关系 3.13.0 26.0 26.2.x The 3.13 release series is compatible with Erlang 26. OpenSSL 3 support in Erlang is considered to be mature and ready for…...

瑞鑫RK3588 画中画 OSD 效果展示
这些功能本来在1126平台都实现过 但是迁移到3588平台之后 发现 API接口变化较大 主要开始的时候会比较费时间 需要找到变动接口对应的新接口 之后 就比较好操作了 经过几天的操作 已实现 效果如下...

【全开源】防伪溯源一体化管理系统源码(FastAdmin+ThinkPHP+Uniapp)
🔍防伪溯源一体化管理系统:守护品质,追溯无忧 一款基于FastAdminThinkPHP和Uniapp进行开发的多平台(微信小程序、H5网页)溯源、防伪、管理一体化独立系统,拥有强大的防伪码和溯源码双码生成功能࿰…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...