当前位置: 首页 > news >正文

保姆级使用PyTorch训练与评估自己的EVA网络教程

在这里插入图片描述

文章目录

  • 前言
  • 0. 环境搭建&快速开始
  • 1. 数据集制作
    • 1.1 标签文件制作
    • 1.2 数据集划分
    • 1.3 数据集信息文件制作
  • 2. 修改参数文件
  • 3. 训练
  • 4. 评估
  • 5. 其他教程

前言

项目地址:https://github.com/Fafa-DL/Awesome-Backbones

操作教程:https://www.bilibili.com/video/BV1SY411P7Nd

EVA原论文:点我跳转

如果你以为该仓库仅支持训练一个模型那就大错特错了,我在项目地址放了目前支持的42种模型(LeNet5、AlexNet、VGG、DenseNet、ResNet、Wide-ResNet、ResNeXt、SEResNet、SEResNeXt、RegNet、MobileNetV2、MobileNetV3、ShuffleNetV1、ShuffleNetV2、EfficientNet、RepVGG、Res2Net、ConvNeXt、HRNet、ConvMixer、CSPNet、Swin-Transformer、Vision-Transformer、Transformer-in-Transformer、MLP-Mixer、DeiT、Conformer、T2T-ViT、Twins、PoolFormer、VAN、HorNet、EfficientFormer、Swin Transformer V2、MViT V2、MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2),使用方式一模一样。且目前满足了大部分图像分类需求,进度快的同学甚至论文已经在审了

0. 环境搭建&快速开始

  • 这一步我也在最近录制了视频

最新Windows配置VSCode与Anaconda环境

『图像分类』从零环境搭建&快速开始

  • 不想看视频也将文字版放在此处。建议使用Anaconda进行环境管理,创建环境命令如下
conda create -n [name] python=3.6 其中[name]改成自己的环境名,如[name]->torch,conda create -n torch python=3.6
  • 我的测试环境如下
torch==1.7.1
torchvision==0.8.2
scipy==1.4.1
numpy==1.19.2
matplotlib==3.2.1
opencv_python==3.4.1.15
tqdm==4.62.3
Pillow==8.4.0
h5py==3.1.0
terminaltables==3.1.0
packaging==21.3
  • 首先安装Pytorch。建议版本和我一致,进入Pytorch官网,点击 install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
  • 安装完Pytorch后,再运行
pip install -r requirements.txt
  • 下载MobileNetV3-Small权重至datas
  • Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt

1. 数据集制作

1.1 标签文件制作

  • 将项目代码下载到本地
    在这里插入图片描述

  • 本次演示以花卉数据集为例,目录结构如下:

├─flower_photos
│  ├─daisy
│  │      100080576_f52e8ee070_n.jpg
│  │      10140303196_b88d3d6cec.jpg
│  │      ...
│  ├─dandelion
│  │      10043234166_e6dd915111_n.jpg
│  │      10200780773_c6051a7d71_n.jpg
│  │      ...
│  ├─roses
│  │      10090824183_d02c613f10_m.jpg
│  │      102501987_3cdb8e5394_n.jpg
│  │      ...
│  ├─sunflowers
│  │      1008566138_6927679c8a.jpg
│  │      1022552002_2b93faf9e7_n.jpg
│  │      ...
│  └─tulips
│  │      100930342_92e8746431_n.jpg
│  │      10094729603_eeca3f2cb6.jpg
│  │      ...
  • Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

在这里插入图片描述

1.2 数据集划分

  • 打开Awesome-Backbones/tools/split_data.py
  • 修改原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos' # 改为你自己的数据路径
new_dataset = 'A:/Awesome-Backbones/datasets'
  • Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
  • 得到划分后的数据集格式如下:
├─...
├─datasets
│  ├─test
│  │  ├─daisy
│  │  ├─dandelion
│  │  ├─roses
│  │  ├─sunflowers
│  │  └─tulips
│  └─train
│      ├─daisy
│      ├─dandelion
│      ├─roses
│      ├─sunflowers
│      └─tulips
├─...

1.3 数据集信息文件制作

  • 确保划分后的数据集是在Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path   = '你的数据集路径'
  • Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
  • Awesome-Backbones/datas下得到生成的数据集信息文件train.txttest.txt
    在这里插入图片描述

2. 修改参数文件

  • 每个模型均对应有各自的配置文件,保存在Awesome-Backbones/models

  • backboneneckheadhead.loss构成一个完整模型

  • 找到EVA参数配置文件,可以看到所有支持的类型都在这,且每个模型均提供预训练权重
    在这里插入图片描述

  • model_cfg中修改num_classes为自己数据集类别大小

  • 按照自己电脑性能在data_cfg中修改batch_sizenum_workers

  • 若有预训练权重则可以将pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights

  • 若需要冻结训练则freeze_flag 设置为True,可选冻结的有backbone, neck, head

  • optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小

  • 学习率更新详见core/optimizers/lr_update.py,同样准备了视频『图像分类』学习率更新策略|优化器

  • 更具体配置文件修改可参考配置文件解释,同样准备了视频『图像分类』配置文件补充说明

3. 训练

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/train.txttest.txtannotations.txt对应
  • 选择想要训练的模型,在Awesome-Backbones/models/下找到对应配置文件,以eva_g _p14_headless为例
  • 按照配置文件解释修改参数
  • Awesome-Backbones路径下打开终端运行
python tools/train.py models/eva/eva_g _p14_headless.py

在这里插入图片描述

4. 评估

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/test.txtannotations.txt对应
  • Awesome-Backbones/models/下找到对应配置文件
  • 在参数配置文件中修改权重路径其余不变
ckpt = '你的训练权重路径'
  • Awesome-Backbones路径下打开终端运行
python tools/evaluation.py models/eva/eva_g _p14_headless.py

在这里插入图片描述

  • 单张图像测试,在Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/eva/eva_g _p14_headless.py

在这里插入图片描述
至此完毕,实在没运行起来就去B站看我手把手带大家运行的视频教学吧~

5. 其他教程

除开上述,我还为大家准备了其他一定用到的操作教程,均放在了GitHub项目首页,为了你们方便为也粘贴过来

  • 环境搭建
  • 数据集准备
  • 配置文件解释
  • 训练
  • 模型评估&批量检测/视频检测
  • 计算Flops&Params
  • 添加新的模型组件
  • 类别激活图可视化
  • 学习率策略可视化

有任何更新均会在Github与B站进行通知,记得Star与三连关注噢~

相关文章:

保姆级使用PyTorch训练与评估自己的EVA网络教程

文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址:https://github.com/Fafa-DL/Awesome-Backbones 操作教程:https://www.bilibili.co…...

Java--JMH--性能测试--测试软件运行效率/时间--StopWatch

写在前面: 很多时候想要测试代码运行时间,或者比较2个运行的效率。 最简单的方法就是Sytem.currentTimeMillis记录2开始和结束时间来算 但是Java 代码越执行越快,放在后面的方法会有优势,这个原因受留个眼,以后研究。大概有受类加…...

JavaScript Array(数组)对象

数组对象的作用是:使用单独的变量名来存储一系列的值。参数参数 size 是期望的数组元素个数。返回的数组,length 字段将被设为 size 的值。参数 element ...; elementn 是参数列表。当使用这些参数来调用构造函数 Array() 时,新创建的数组的元…...

干货 | 电容在电路35个基本常识

第1个电压源正负端接了一个电容,与电路并联,用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。当用于电池电源时,具有交…...

日读300篇文献的技巧

感觉自己看文章很慢,有时候也抓不住重点。 如果是英文文献的话,可能还要有点难度,毕竟英语渣渣还是需要有中文-》英文的转换过程。 最近在搞毕业论文的时候,发现了一个非常好玩的东西,大大提升了我看文章搞科研&#x…...

C++核心编程

一、内存分区模型概述:C程序在执行时,将内存划分为4个区域程序运行前:代码区:存放函数体的二进制代码,由操作系统管理①共享。共享的目的是对于频繁被执行的程序,在内存中只需有一份代码即可②只读。使其只…...

SpringMVC程序开发

目录 SpringMVC 1、MVC定义 2、MVC和SpringMVC之间的关系 学SpringMVC 1、Spring MVC的创建和连接 浏览器获取前端接口和后端程序连接功能实现 2、获取参数 2.1、传递单个参数/多个参数 2.2、传递对象 2.3、传递表单参数 2.4、后端参数重命名 2.5、RequestBody接收J…...

多版本并发控制MVCC

什么是MVCC? MVCC是一种并发控制方法,一般在数据库管理系统中,实现数据库的并发访问。 可以使用乐观锁和悲观锁来实现。 MVCC的作用? 可以在不加锁的情况下解决读写问题,同时还可以解决脏读,幻读&#…...

JavaScript Date(日期)对象

日期对象用于处理日期和时间。在线实例返回当日的日期和时间如何使用 Date() 方法获得当日的日期。getFullYear()使用 getFullYear() 获取年份。getTime()getTime() 返回从 1970 年 1 月 1 日至今的毫秒数。setFullYear()如何使用 setFullYear() 设置具体的日期。toUTCString()…...

【Python】AES加解密代码,文章还有加密串等你来解密,等你来挑战

🍦🍦写这篇AES文章也是有件趣事,有位小伙伴发了段密文,看看谁解密速度快,学过Python的小伙伴一下子就解开来了,内容也挺有趣的。 🍟🍟原来加解密也可以这么有趣,虽然看起…...

代码随想录【Day34】| 1005. K 次取反后最大化的数组和、134. 加油站、135. 分发糖果

1005. K 次取反后最大化的数组和 题目链接 题目描述: 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。&…...

Java性能调优杀手锏JMH

JMH简介 JMH(Java Microbenchmark Harness)由 OpenJDK/Oracle 里面那群开发了 Java编译器的大牛们所开发,是一个功能强大、灵活的工具,它可以用于检测和评估Java应用程序的性能,主要目的是测量Java应用程序的性能,尤其是在多线程…...

实现excle表上传生成echarts图

代码如下html <!--这是一个网上关于读取Excel最经典的代码--> <!DOCTYPE html> <html><head><meta charset"utf-8"><title>ECharts</title><!-- 引入 echarts.js --><!-- <script src"newjs/js/incubato…...

python代码如何打包

网上的文章对小白都不太友好呀&#xff0c;讲得都比较高大上&#xff0c;本文章就用最简单的方式来教会大家如何打包。既然各位已经学习到了python打包了&#xff0c; 深适度应该跟我查不多。 注意事项&#xff1a; 1. 这个插件只能打包 mac 、win系统运行的文件&#xff0c;也…...

MyBatis学习笔记(十二) —— MyBatis的逆向工程

12、MyBatis的逆向工程 正向工程&#xff1a;先创建Java实体类&#xff0c;由框架负责根据实体类生成数据库表。Hibernate是支持正向工程的。 逆向工程&#xff1a;先创建数据库表&#xff0c;由框架负责根据数据库表&#xff0c;反向生成如下资源&#xff1a; Java实体类Mappe…...

4.Elasticsearch深入了解

4.Elasticsearch深入了解[toc]1.Elasticsearch架构原理Elasticsearch的节点类型在Elasticsearch主要分成两类节点&#xff0c;一类是Master&#xff0c;一类是DataNode。Master节点在Elasticsearch启动时&#xff0c;会选举出来一个Master节点。当某个节点启动后&#xff0c;然…...

【HashSet】| 深度剥析Java SE 源码合集Ⅲ

目录一. &#x1f981; HashSet介绍1.1 特点1.2 底层实现二. &#x1f981; 结构以及对应方法分析2.1 结构组成2.1.1 源码实现2.1.2 成员变量及构造方法2.2 常用的方法2.2.1 添加add(E e)方法2.2.2 删除remove(Object o)方法三. 最后想说一. &#x1f981; HashSet介绍 1.1 特…...

你了解线程的状态转换吗

本文概述: 讲述线程的六种状态. 你可能已经了解了六种状态, 但是你知道 sleep 被唤醒之后, wait ()被 notify 之后进入了什么状态吗? 本文只是开胃小菜, 你看看下一篇文章对你有没有帮助. 一共有六种状态: New 新建状态Runnable 运行状态Blocked 阻塞状态Waiting 等待状态Tim…...

MyBatis-Plus联表查询的短板,该如何解决呢

mybatis-plus作为mybatis的增强工具&#xff0c;它的出现极大的简化了开发中的数据库操作&#xff0c;但是长久以来&#xff0c;它的联表查询能力一直被大家所诟病。一旦遇到left join或right join的左右连接&#xff0c;你还是得老老实实的打开xml文件&#xff0c;手写上一大段…...

吲哚菁绿-巯基,ICG-SH,科研级别试剂,吲哚菁绿可用于测定心输出量、肝脏功能、肝血流量,和对于眼科血管造影术。

ICG-THIOL,吲哚菁绿-巯基 中文名称&#xff1a;吲哚菁绿-巯基 英文名称&#xff1a;ICG-THIOL 英文别名&#xff1a;ICG-SH 性状&#xff1a;绿色粉末 溶剂&#xff1a;溶于二氯甲烷等其他常规有机溶剂 稳定性&#xff1a;冷藏保存&#xff0c;避免反复冻融。 存储条件&…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...