保姆级使用PyTorch训练与评估自己的EVA网络教程

文章目录
- 前言
- 0. 环境搭建&快速开始
- 1. 数据集制作
- 1.1 标签文件制作
- 1.2 数据集划分
- 1.3 数据集信息文件制作
- 2. 修改参数文件
- 3. 训练
- 4. 评估
- 5. 其他教程
前言
项目地址:https://github.com/Fafa-DL/Awesome-Backbones
操作教程:https://www.bilibili.com/video/BV1SY411P7Nd
EVA原论文:点我跳转
如果你以为该仓库仅支持训练一个模型那就大错特错了,我在项目地址放了目前支持的42种模型(LeNet5、AlexNet、VGG、DenseNet、ResNet、Wide-ResNet、ResNeXt、SEResNet、SEResNeXt、RegNet、MobileNetV2、MobileNetV3、ShuffleNetV1、ShuffleNetV2、EfficientNet、RepVGG、Res2Net、ConvNeXt、HRNet、ConvMixer、CSPNet、Swin-Transformer、Vision-Transformer、Transformer-in-Transformer、MLP-Mixer、DeiT、Conformer、T2T-ViT、Twins、PoolFormer、VAN、HorNet、EfficientFormer、Swin Transformer V2、MViT V2、MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2),使用方式一模一样。且目前满足了大部分图像分类需求,进度快的同学甚至论文已经在审了
0. 环境搭建&快速开始
- 这一步我也在最近录制了视频
最新Windows配置VSCode与Anaconda环境
『图像分类』从零环境搭建&快速开始
- 不想看视频也将文字版放在此处。建议使用Anaconda进行环境管理,创建环境命令如下
conda create -n [name] python=3.6 其中[name]改成自己的环境名,如[name]->torch,conda create -n torch python=3.6
- 我的测试环境如下
torch==1.7.1
torchvision==0.8.2
scipy==1.4.1
numpy==1.19.2
matplotlib==3.2.1
opencv_python==3.4.1.15
tqdm==4.62.3
Pillow==8.4.0
h5py==3.1.0
terminaltables==3.1.0
packaging==21.3
- 首先安装Pytorch。建议版本和我一致,进入Pytorch官网,点击
install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
- 安装完Pytorch后,再运行
pip install -r requirements.txt
- 下载MobileNetV3-Small权重至datas下
- Awesome-Backbones文件夹下终端输入
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt
1. 数据集制作
1.1 标签文件制作
-
将项目代码下载到本地

-
本次演示以花卉数据集为例,目录结构如下:
├─flower_photos
│ ├─daisy
│ │ 100080576_f52e8ee070_n.jpg
│ │ 10140303196_b88d3d6cec.jpg
│ │ ...
│ ├─dandelion
│ │ 10043234166_e6dd915111_n.jpg
│ │ 10200780773_c6051a7d71_n.jpg
│ │ ...
│ ├─roses
│ │ 10090824183_d02c613f10_m.jpg
│ │ 102501987_3cdb8e5394_n.jpg
│ │ ...
│ ├─sunflowers
│ │ 1008566138_6927679c8a.jpg
│ │ 1022552002_2b93faf9e7_n.jpg
│ │ ...
│ └─tulips
│ │ 100930342_92e8746431_n.jpg
│ │ 10094729603_eeca3f2cb6.jpg
│ │ ...
- 在
Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

1.2 数据集划分
- 打开
Awesome-Backbones/tools/split_data.py - 修改
原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos' # 改为你自己的数据路径
new_dataset = 'A:/Awesome-Backbones/datasets'
- 在
Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
- 得到划分后的数据集格式如下:
├─...
├─datasets
│ ├─test
│ │ ├─daisy
│ │ ├─dandelion
│ │ ├─roses
│ │ ├─sunflowers
│ │ └─tulips
│ └─train
│ ├─daisy
│ ├─dandelion
│ ├─roses
│ ├─sunflowers
│ └─tulips
├─...
1.3 数据集信息文件制作
- 确保划分后的数据集是在
Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path = '你的数据集路径'
- 在
Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
- 在
Awesome-Backbones/datas下得到生成的数据集信息文件train.txt与test.txt

2. 修改参数文件
-
每个模型均对应有各自的配置文件,保存在
Awesome-Backbones/models下 -
由
backbone、neck、head、head.loss构成一个完整模型 -
找到EVA参数配置文件,可以看到
所有支持的类型都在这,且每个模型均提供预训练权重

-
在
model_cfg中修改num_classes为自己数据集类别大小 -
按照自己电脑性能在
data_cfg中修改batch_size与num_workers -
若有预训练权重则可以将
pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights -
若需要冻结训练则
freeze_flag设置为True,可选冻结的有backbone, neck, head -
在
optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小 -
学习率更新详见
core/optimizers/lr_update.py,同样准备了视频『图像分类』学习率更新策略|优化器 -
更具体配置文件修改可参考配置文件解释,同样准备了视频『图像分类』配置文件补充说明
3. 训练
- 确认
Awesome-Backbones/datas/annotations.txt标签准备完毕 - 确认
Awesome-Backbones/datas/下train.txt与test.txt与annotations.txt对应 - 选择想要训练的模型,在
Awesome-Backbones/models/下找到对应配置文件,以eva_g _p14_headless为例 - 按照
配置文件解释修改参数 - 在
Awesome-Backbones路径下打开终端运行
python tools/train.py models/eva/eva_g _p14_headless.py

4. 评估
- 确认
Awesome-Backbones/datas/annotations.txt标签准备完毕 - 确认
Awesome-Backbones/datas/下test.txt与annotations.txt对应 - 在
Awesome-Backbones/models/下找到对应配置文件 - 在参数配置文件中
修改权重路径,其余不变
ckpt = '你的训练权重路径'
- 在
Awesome-Backbones路径下打开终端运行
python tools/evaluation.py models/eva/eva_g _p14_headless.py

- 单张图像测试,在
Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/eva/eva_g _p14_headless.py

至此完毕,实在没运行起来就去B站看我手把手带大家运行的视频教学吧~
5. 其他教程
除开上述,我还为大家准备了其他一定用到的操作教程,均放在了GitHub项目首页,为了你们方便为也粘贴过来
- 环境搭建
- 数据集准备
- 配置文件解释
- 训练
- 模型评估&批量检测/视频检测
- 计算Flops&Params
- 添加新的模型组件
- 类别激活图可视化
- 学习率策略可视化
有任何更新均会在Github与B站进行通知,记得Star与三连关注噢~
相关文章:
保姆级使用PyTorch训练与评估自己的EVA网络教程
文章目录前言0. 环境搭建&快速开始1. 数据集制作1.1 标签文件制作1.2 数据集划分1.3 数据集信息文件制作2. 修改参数文件3. 训练4. 评估5. 其他教程前言 项目地址:https://github.com/Fafa-DL/Awesome-Backbones 操作教程:https://www.bilibili.co…...
Java--JMH--性能测试--测试软件运行效率/时间--StopWatch
写在前面: 很多时候想要测试代码运行时间,或者比较2个运行的效率。 最简单的方法就是Sytem.currentTimeMillis记录2开始和结束时间来算 但是Java 代码越执行越快,放在后面的方法会有优势,这个原因受留个眼,以后研究。大概有受类加…...
JavaScript Array(数组)对象
数组对象的作用是:使用单独的变量名来存储一系列的值。参数参数 size 是期望的数组元素个数。返回的数组,length 字段将被设为 size 的值。参数 element ...; elementn 是参数列表。当使用这些参数来调用构造函数 Array() 时,新创建的数组的元…...
干货 | 电容在电路35个基本常识
第1个电压源正负端接了一个电容,与电路并联,用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。当用于电池电源时,具有交…...
日读300篇文献的技巧
感觉自己看文章很慢,有时候也抓不住重点。 如果是英文文献的话,可能还要有点难度,毕竟英语渣渣还是需要有中文-》英文的转换过程。 最近在搞毕业论文的时候,发现了一个非常好玩的东西,大大提升了我看文章搞科研&#x…...
C++核心编程
一、内存分区模型概述:C程序在执行时,将内存划分为4个区域程序运行前:代码区:存放函数体的二进制代码,由操作系统管理①共享。共享的目的是对于频繁被执行的程序,在内存中只需有一份代码即可②只读。使其只…...
SpringMVC程序开发
目录 SpringMVC 1、MVC定义 2、MVC和SpringMVC之间的关系 学SpringMVC 1、Spring MVC的创建和连接 浏览器获取前端接口和后端程序连接功能实现 2、获取参数 2.1、传递单个参数/多个参数 2.2、传递对象 2.3、传递表单参数 2.4、后端参数重命名 2.5、RequestBody接收J…...
多版本并发控制MVCC
什么是MVCC? MVCC是一种并发控制方法,一般在数据库管理系统中,实现数据库的并发访问。 可以使用乐观锁和悲观锁来实现。 MVCC的作用? 可以在不加锁的情况下解决读写问题,同时还可以解决脏读,幻读&#…...
JavaScript Date(日期)对象
日期对象用于处理日期和时间。在线实例返回当日的日期和时间如何使用 Date() 方法获得当日的日期。getFullYear()使用 getFullYear() 获取年份。getTime()getTime() 返回从 1970 年 1 月 1 日至今的毫秒数。setFullYear()如何使用 setFullYear() 设置具体的日期。toUTCString()…...
【Python】AES加解密代码,文章还有加密串等你来解密,等你来挑战
🍦🍦写这篇AES文章也是有件趣事,有位小伙伴发了段密文,看看谁解密速度快,学过Python的小伙伴一下子就解开来了,内容也挺有趣的。 🍟🍟原来加解密也可以这么有趣,虽然看起…...
代码随想录【Day34】| 1005. K 次取反后最大化的数组和、134. 加油站、135. 分发糖果
1005. K 次取反后最大化的数组和 题目链接 题目描述: 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。&…...
Java性能调优杀手锏JMH
JMH简介 JMH(Java Microbenchmark Harness)由 OpenJDK/Oracle 里面那群开发了 Java编译器的大牛们所开发,是一个功能强大、灵活的工具,它可以用于检测和评估Java应用程序的性能,主要目的是测量Java应用程序的性能,尤其是在多线程…...
实现excle表上传生成echarts图
代码如下html <!--这是一个网上关于读取Excel最经典的代码--> <!DOCTYPE html> <html><head><meta charset"utf-8"><title>ECharts</title><!-- 引入 echarts.js --><!-- <script src"newjs/js/incubato…...
python代码如何打包
网上的文章对小白都不太友好呀,讲得都比较高大上,本文章就用最简单的方式来教会大家如何打包。既然各位已经学习到了python打包了, 深适度应该跟我查不多。 注意事项: 1. 这个插件只能打包 mac 、win系统运行的文件,也…...
MyBatis学习笔记(十二) —— MyBatis的逆向工程
12、MyBatis的逆向工程 正向工程:先创建Java实体类,由框架负责根据实体类生成数据库表。Hibernate是支持正向工程的。 逆向工程:先创建数据库表,由框架负责根据数据库表,反向生成如下资源: Java实体类Mappe…...
4.Elasticsearch深入了解
4.Elasticsearch深入了解[toc]1.Elasticsearch架构原理Elasticsearch的节点类型在Elasticsearch主要分成两类节点,一类是Master,一类是DataNode。Master节点在Elasticsearch启动时,会选举出来一个Master节点。当某个节点启动后,然…...
【HashSet】| 深度剥析Java SE 源码合集Ⅲ
目录一. 🦁 HashSet介绍1.1 特点1.2 底层实现二. 🦁 结构以及对应方法分析2.1 结构组成2.1.1 源码实现2.1.2 成员变量及构造方法2.2 常用的方法2.2.1 添加add(E e)方法2.2.2 删除remove(Object o)方法三. 最后想说一. 🦁 HashSet介绍 1.1 特…...
你了解线程的状态转换吗
本文概述: 讲述线程的六种状态. 你可能已经了解了六种状态, 但是你知道 sleep 被唤醒之后, wait ()被 notify 之后进入了什么状态吗? 本文只是开胃小菜, 你看看下一篇文章对你有没有帮助. 一共有六种状态: New 新建状态Runnable 运行状态Blocked 阻塞状态Waiting 等待状态Tim…...
MyBatis-Plus联表查询的短板,该如何解决呢
mybatis-plus作为mybatis的增强工具,它的出现极大的简化了开发中的数据库操作,但是长久以来,它的联表查询能力一直被大家所诟病。一旦遇到left join或right join的左右连接,你还是得老老实实的打开xml文件,手写上一大段…...
吲哚菁绿-巯基,ICG-SH,科研级别试剂,吲哚菁绿可用于测定心输出量、肝脏功能、肝血流量,和对于眼科血管造影术。
ICG-THIOL,吲哚菁绿-巯基 中文名称:吲哚菁绿-巯基 英文名称:ICG-THIOL 英文别名:ICG-SH 性状:绿色粉末 溶剂:溶于二氯甲烷等其他常规有机溶剂 稳定性:冷藏保存,避免反复冻融。 存储条件&…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...
