当前位置: 首页 > news >正文

R语言数据分析15-xgboost模型预测

XGBoost模型预测的主要大致思路:

1. 数据准备

首先,需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。

步骤:
  • 读取数据:从CSV文件或其他数据源读取数据。
  • 数据清理:处理缺失值、异常值等。
  • 数据转换:将因变量转换为因子类型,特征变量转换为适合模型输入的格式。
  • 数据分割:将数据分为训练集和测试集,一般按照8:2的比例分割。

2. 特征工程

特征工程是提升模型性能的关键步骤。包括:

  • 特征选择:选择对预测目标最重要的特征。
  • 特征转换:将分类变量转换为数值变量(如独热编码)。
  • 特征缩放:标准化或归一化特征值。

3. 转换数据格式

XGBoost需要输入数据为矩阵格式。因此,需要将数据转换为稀疏矩阵格式。

4. 训练模型

训练模型是整个过程的核心步骤。需要设置模型的参数,并使用训练数据进行训练。

关键点:
  • 设置参数:包括树的深度、学习率、采样率等。
  • 交叉验证:使用交叉验证找到最佳的迭代次数。
  • 模型训练:使用最佳参数训练模型。

5. 模型调参

为了获得最佳模型性能,需要进行参数调优。常用的方法有网格搜索、随机搜索和贝叶斯优化。

6. 模型评估

使用测试集评估模型性能。常用的评估指标有准确率、精确率、召回率、F1分数等。

步骤:
  • 生成预测值:使用测试集生成预测值。
  • 计算评估指标:根据预测值和实际值计算模型性能指标。

7. 模型预测

使用训练好的模型对新数据进行预测。将新数据转换为与训练数据相同的格式,然后进行预测。

8. 模型保存和加载

训练好的模型可以保存到文件中,以便后续加载和使用。

步骤:
  • 保存模型:将模型保存到文件中。
  • 加载模型:从文件中加载模型,以便进行预测。

本文数据和代码案例

library(xgboost)
library(Metrics)
library(ggplot2)
library(readxl)
library(dplyr)# 读取数据
data <- read_excel("分析数据.xlsx")# 用每列的后一个值填充缺失值
data1 <- data %>%mutate(across(everything(), ~ ifelse(is.na(.), lead(.), .)))# 查看填充后的数据
head(data1)
# 分离特征和响应变量
X <- data1 %>% select(-ILI) # 移除ILI列
y <- data1$ILI
# 划分训练集和测试集
set.seed(123) # 确保可重复性
train_indices <- sample(1:nrow(data1), size = 0.7 * nrow(data1))
train_data <- X[train_indices, ]
train_label <- y[train_indices]
test_data <- X[-train_indices, ]
test_label <- y[-train_indices]
# 设置XGBoost参数
params <- list(booster = "gbtree",objective = "reg:squarederror",eta = 0.1
# 训练模型
model <- xgb.train(params, dtrain, nrounds = 150)# 预测
predictions <- predict(model, dtest)
# 输出评价指标
cat("R2:", R2, "\n")
cat("Adjusted R2:", adj_R2, "\n")
cat("RMSE:", RMSE, "\n")
cat("MSE:", MSE, "\n")

最终可视化评价指标

# 可视化
# 创建散点图和回归线
scatter_plot <- data.frame(Actual = test_label, Predicted = predictions) %>%ggplot(aes(x = Actual, y = Predicted)) +geom_point() +geom_smooth(method = "lm", col = "blue") +xlab("Actual ILI1") +ylab("Predicted ILI1") +ggtitle("Actual vs Predicted")# 设置标题居中
scatter_plot +theme(plot.title = element_text(hjust = 0.5))

思路主要是使用R语言进行XGBoost模型预测的流程包括数据准备、模型训练、参数调优、模型评估和预测。首先,加载数据并进行预处理,然后使用 xgb.cvxgb.train 函数进行模型训练和交叉验证。接着,通过调整参数优化模型性能,最后使用测试集评估模型,并使用训练好的模型进行预测新数据。 

数据和完整代码

创作不易,希望大家多多点赞收藏和评论!

相关文章:

R语言数据分析15-xgboost模型预测

XGBoost模型预测的主要大致思路&#xff1a; 1. 数据准备 首先&#xff0c;需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。 步骤&#xff1a; 读取数据&#xff1a;从CSV文件或其他数据源读取数据。数据清理&#xff1a;处理缺失值、异常值等…...

重构大学数学基础_week04_从点积理解傅里叶变换

这周我们来看一下傅里叶变换。傅里叶变换是一种在数学和许多科学领域中广泛应用的分析方法&#xff0c;它允许我们将信号或函数从其原始域&#xff08;通常是时间域或空间域&#xff09;转换到频域表示。在频域中&#xff0c;信号被表示为其组成频率的幅度和相位&#xff0c;这…...

Shell以及Shell编程

Shell的任务 ①分析命令&#xff1b; ②处理通配符、变量替换、命令替换、重定向、管道和作业控制&#xff1b; ③搜索命令并执行。 内部命令&#xff1a;内嵌在Shell中。 外部命令&#xff1a;存在于磁盘上的独立可执行文件。 #&#xff01;/bin/bash #! 称为一个幻数&…...

从记忆到想象:探索AI的智能未来

引言 人工智能&#xff08;AI&#xff09;在信息处理、数据分析和任务自动化等方面展现了强大的能力。然而&#xff0c;在人类独有的记忆和想象力领域&#xff0c;AI仍然有很长的路要走。加利福尼亚大学戴维斯分校的心理学和神经科学教授查兰兰加纳特&#xff08;Charan Ranga…...

“安全生产月”专题报道:AI智能监控技术如何助力安全生产

今年6月是第23个全国“安全生产月”&#xff0c;6月16日为全国“安全宣传咨询日”。今年全国“安全生产月”活动主题为“人人讲安全、个个会应急——畅通生命通道”。近日&#xff0c;国务院安委会办公室、应急管理部对开展好2024年全国“安全生产月”活动作出安排部署。 随着科…...

【转】ES, 广告索引

思考&#xff1a; 1&#xff09;直接把别名切换到上一个版本索引 --解决问题 2&#xff09;广告层级索引如何解决&#xff1f; -routing、join 3&#xff09;查询的过程&#xff1a;query and fetch, 优化掉fetch 4&#xff09;segment合并策略 5&#xff09;全量写入时副…...

Unity学习要点

前言 学习Unity作为游戏开发的强大工具&#xff0c;对于初学者来说&#xff0c;掌握一些基础而实用的技巧是非常重要的。这不仅能帮助你更快地上手&#xff0c;还能在项目开发过程中提高效率。以下是一些Unity初学者的使用技巧&#xff0c;希望能为你的学习之旅提供帮助。 ##…...

简单使用phpqrcode 生成二维码图片

$path ROOT_PATH; //tp项目根路径 require_once $path.vendor/phpqrcode/phpqrcode.php; //加载phpqrcode库 $url http://.$_SERVER[HTTP_HOST]./home/index/detail?id.$param[id]; $value $url; //二维码内容 $errorCorrectionLevel L; //容错级别 $mat…...

软考架构-计算机网络考点

会超纲&#xff0c;3-5分 网络分类 按分布范围划分 局域网 LAN 10m-1000m左右 房间、楼宇、校园 传输速率高 城域网 MAN 10km 城市 广域网 WAN 100km以上 国家或全球&#xff08;英特网&#xff09; 按拓扑结构划分 总线型&#xff1a;利用率低、干…...

渗透测试之内核安全系列课程:Rootkit技术初探(三)

今天&#xff0c;我们来讲一下内核安全&#xff01; 本文章仅提供学习&#xff0c;切勿将其用于不法手段&#xff01; 目前&#xff0c;在渗透测试领域&#xff0c;主要分为了两个发展方向&#xff0c;分别为Web攻防领域和PWN&#xff08;二进制安全&#xff09;攻防领域。在…...

大模型日报2024-06-08

大模型日报 2024-06-08 大模型资讯 AI研究&#xff1a;通过消除矩阵乘法实现高效的大语言模型 摘要: 该AI研究探讨了通过消除矩阵乘法来实现高效且可扩展的大语言模型&#xff08;LLMs&#xff09;。此方法旨在提升模型性能&#xff0c;提供更快速和高效的计算方案。 AWS大力投…...

leetcode 1631.最小体力消耗路径

思路&#xff1a;BFS二分 这道题和洛谷上的那个“汽车拉力赛”那道题很相似&#xff0c;但是这道题相较于洛谷那个来说会简单一些。 这里作者一开始写的时候思路堵在了怎么在BFS中用二分&#xff0c;先入为主的以为需要先写出来搜索函数然后再去处理二分的事&#xff0c;但是…...

【ARM64 常见汇编指令学习 19.2 -- ARM64 地址加载指令 ADR 详细介绍】

文章目录 地址加载指令 ADRADR 指令使用场景例子注意事项 地址加载指令 ADR ARMv8 架构引入了一系列的改进和扩展&#xff0c;包括对汇编指令集的更新。在这之中&#xff0c;ADR 指令是一个重要的组成部分&#xff0c;它用于计算并加载一个地址到寄存器。 ADR 指令 ADR 指令…...

vscode输出控制台中文显示乱码最有效解决办法

当VSCode的输出控制台中文显示乱码时&#xff0c;一个有效的解决办法是通过设置环境变量来确保编码的正确性。以下是解决方式&#xff1a; 首先&#xff0c;设置环境变量以修正乱码问题&#xff1a; 如果上述方法没有解决乱码问题&#xff0c;请继续以下步骤&#xff1a; 右键…...

springboot + Vue前后端项目(第十五记)

项目实战第十五记 写在前面1.后端接口实现1.1 用户表添加角色字段1.2 角色表增加唯一标识字段1.3 UserDTO1.4 UserServiceImpl1.5 MenuServiceImpl 2. 前端实现2.1 User.vue2.2 动态菜单设计2.2.1 Login.vue2.2.2 Aside.vue 2.3 动态路由设计2.3.1 菜单表新增字段page_path2.3.…...

如何在Windows 11中恢复丢失的快速访问菜单?这里提供解决办法

序言 在电脑的“快速访问”菜单中找不到固定的项目?或者,整个菜单对你来说已经消失了吗?无论哪种方式,你都可以强制你的电脑恢复菜单并显示其中的所有项目。以下是如何在你的Windows 11电脑上做到这一点。 将文件资源管理器设置为打开到主页 当你在文件资源管理器的左侧…...

变声器软件免费版有哪些?国内外12大热门变声器大盘点!(新)

变声软件是一种人工智能AI音频处理工具&#xff0c;允许用户实时修改自己的声音或改变预先录制的音频。这些软件解决方案可提供不同的效果&#xff0c;如改变声音的音调或速度&#xff0c;或将我们的声音转换成其他人或其他东西的声音&#xff0c;如名人、卡通人物、机器人或不…...

计算机网络 —— 数据链路层(无线局域网)

计算机网络 —— 数据链路层&#xff08;无线局域网&#xff09; 什么是无线局域网IEEE 802.11主要标准及其特点&#xff1a; 802.11的MAC帧样式 我们来看看无线局域网&#xff1a; 什么是无线局域网 无线局域网&#xff08;Wireless Local Area Network&#xff0c;简称WLAN…...

SpringBoot图书管理系统【附:资料➕文档】

前言&#xff1a;我是源码分享交流Coding&#xff0c;专注JavaVue领域&#xff0c;专业提供程序设计开发、源码分享、 技术指导讲解、各类项目免费分享&#xff0c;定制和毕业设计服务&#xff01; 免费获取方式--->>文章末尾处&#xff01; 项目介绍048&#xff1a; 图…...

shell简介

一、Shell 概念定义 Shell 是用 C 语言编写的程序&#xff0c;是用户使用 Linux 的桥梁&#xff0c;既是命令语言又是程序设计语言。 shell 脚本为 Shell 编写的脚本程序&#xff0c;常说的 shell 通常指 shell 脚本。 包含一系列命令的文本文件&#xff0c;这些命令按照特定…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...