当前位置: 首页 > news >正文

R语言数据分析15-xgboost模型预测

XGBoost模型预测的主要大致思路:

1. 数据准备

首先,需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。

步骤:
  • 读取数据:从CSV文件或其他数据源读取数据。
  • 数据清理:处理缺失值、异常值等。
  • 数据转换:将因变量转换为因子类型,特征变量转换为适合模型输入的格式。
  • 数据分割:将数据分为训练集和测试集,一般按照8:2的比例分割。

2. 特征工程

特征工程是提升模型性能的关键步骤。包括:

  • 特征选择:选择对预测目标最重要的特征。
  • 特征转换:将分类变量转换为数值变量(如独热编码)。
  • 特征缩放:标准化或归一化特征值。

3. 转换数据格式

XGBoost需要输入数据为矩阵格式。因此,需要将数据转换为稀疏矩阵格式。

4. 训练模型

训练模型是整个过程的核心步骤。需要设置模型的参数,并使用训练数据进行训练。

关键点:
  • 设置参数:包括树的深度、学习率、采样率等。
  • 交叉验证:使用交叉验证找到最佳的迭代次数。
  • 模型训练:使用最佳参数训练模型。

5. 模型调参

为了获得最佳模型性能,需要进行参数调优。常用的方法有网格搜索、随机搜索和贝叶斯优化。

6. 模型评估

使用测试集评估模型性能。常用的评估指标有准确率、精确率、召回率、F1分数等。

步骤:
  • 生成预测值:使用测试集生成预测值。
  • 计算评估指标:根据预测值和实际值计算模型性能指标。

7. 模型预测

使用训练好的模型对新数据进行预测。将新数据转换为与训练数据相同的格式,然后进行预测。

8. 模型保存和加载

训练好的模型可以保存到文件中,以便后续加载和使用。

步骤:
  • 保存模型:将模型保存到文件中。
  • 加载模型:从文件中加载模型,以便进行预测。

本文数据和代码案例

library(xgboost)
library(Metrics)
library(ggplot2)
library(readxl)
library(dplyr)# 读取数据
data <- read_excel("分析数据.xlsx")# 用每列的后一个值填充缺失值
data1 <- data %>%mutate(across(everything(), ~ ifelse(is.na(.), lead(.), .)))# 查看填充后的数据
head(data1)
# 分离特征和响应变量
X <- data1 %>% select(-ILI) # 移除ILI列
y <- data1$ILI
# 划分训练集和测试集
set.seed(123) # 确保可重复性
train_indices <- sample(1:nrow(data1), size = 0.7 * nrow(data1))
train_data <- X[train_indices, ]
train_label <- y[train_indices]
test_data <- X[-train_indices, ]
test_label <- y[-train_indices]
# 设置XGBoost参数
params <- list(booster = "gbtree",objective = "reg:squarederror",eta = 0.1
# 训练模型
model <- xgb.train(params, dtrain, nrounds = 150)# 预测
predictions <- predict(model, dtest)
# 输出评价指标
cat("R2:", R2, "\n")
cat("Adjusted R2:", adj_R2, "\n")
cat("RMSE:", RMSE, "\n")
cat("MSE:", MSE, "\n")

最终可视化评价指标

# 可视化
# 创建散点图和回归线
scatter_plot <- data.frame(Actual = test_label, Predicted = predictions) %>%ggplot(aes(x = Actual, y = Predicted)) +geom_point() +geom_smooth(method = "lm", col = "blue") +xlab("Actual ILI1") +ylab("Predicted ILI1") +ggtitle("Actual vs Predicted")# 设置标题居中
scatter_plot +theme(plot.title = element_text(hjust = 0.5))

思路主要是使用R语言进行XGBoost模型预测的流程包括数据准备、模型训练、参数调优、模型评估和预测。首先,加载数据并进行预处理,然后使用 xgb.cvxgb.train 函数进行模型训练和交叉验证。接着,通过调整参数优化模型性能,最后使用测试集评估模型,并使用训练好的模型进行预测新数据。 

数据和完整代码

创作不易,希望大家多多点赞收藏和评论!

相关文章:

R语言数据分析15-xgboost模型预测

XGBoost模型预测的主要大致思路&#xff1a; 1. 数据准备 首先&#xff0c;需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。 步骤&#xff1a; 读取数据&#xff1a;从CSV文件或其他数据源读取数据。数据清理&#xff1a;处理缺失值、异常值等…...

重构大学数学基础_week04_从点积理解傅里叶变换

这周我们来看一下傅里叶变换。傅里叶变换是一种在数学和许多科学领域中广泛应用的分析方法&#xff0c;它允许我们将信号或函数从其原始域&#xff08;通常是时间域或空间域&#xff09;转换到频域表示。在频域中&#xff0c;信号被表示为其组成频率的幅度和相位&#xff0c;这…...

Shell以及Shell编程

Shell的任务 ①分析命令&#xff1b; ②处理通配符、变量替换、命令替换、重定向、管道和作业控制&#xff1b; ③搜索命令并执行。 内部命令&#xff1a;内嵌在Shell中。 外部命令&#xff1a;存在于磁盘上的独立可执行文件。 #&#xff01;/bin/bash #! 称为一个幻数&…...

从记忆到想象:探索AI的智能未来

引言 人工智能&#xff08;AI&#xff09;在信息处理、数据分析和任务自动化等方面展现了强大的能力。然而&#xff0c;在人类独有的记忆和想象力领域&#xff0c;AI仍然有很长的路要走。加利福尼亚大学戴维斯分校的心理学和神经科学教授查兰兰加纳特&#xff08;Charan Ranga…...

“安全生产月”专题报道:AI智能监控技术如何助力安全生产

今年6月是第23个全国“安全生产月”&#xff0c;6月16日为全国“安全宣传咨询日”。今年全国“安全生产月”活动主题为“人人讲安全、个个会应急——畅通生命通道”。近日&#xff0c;国务院安委会办公室、应急管理部对开展好2024年全国“安全生产月”活动作出安排部署。 随着科…...

【转】ES, 广告索引

思考&#xff1a; 1&#xff09;直接把别名切换到上一个版本索引 --解决问题 2&#xff09;广告层级索引如何解决&#xff1f; -routing、join 3&#xff09;查询的过程&#xff1a;query and fetch, 优化掉fetch 4&#xff09;segment合并策略 5&#xff09;全量写入时副…...

Unity学习要点

前言 学习Unity作为游戏开发的强大工具&#xff0c;对于初学者来说&#xff0c;掌握一些基础而实用的技巧是非常重要的。这不仅能帮助你更快地上手&#xff0c;还能在项目开发过程中提高效率。以下是一些Unity初学者的使用技巧&#xff0c;希望能为你的学习之旅提供帮助。 ##…...

简单使用phpqrcode 生成二维码图片

$path ROOT_PATH; //tp项目根路径 require_once $path.vendor/phpqrcode/phpqrcode.php; //加载phpqrcode库 $url http://.$_SERVER[HTTP_HOST]./home/index/detail?id.$param[id]; $value $url; //二维码内容 $errorCorrectionLevel L; //容错级别 $mat…...

软考架构-计算机网络考点

会超纲&#xff0c;3-5分 网络分类 按分布范围划分 局域网 LAN 10m-1000m左右 房间、楼宇、校园 传输速率高 城域网 MAN 10km 城市 广域网 WAN 100km以上 国家或全球&#xff08;英特网&#xff09; 按拓扑结构划分 总线型&#xff1a;利用率低、干…...

渗透测试之内核安全系列课程:Rootkit技术初探(三)

今天&#xff0c;我们来讲一下内核安全&#xff01; 本文章仅提供学习&#xff0c;切勿将其用于不法手段&#xff01; 目前&#xff0c;在渗透测试领域&#xff0c;主要分为了两个发展方向&#xff0c;分别为Web攻防领域和PWN&#xff08;二进制安全&#xff09;攻防领域。在…...

大模型日报2024-06-08

大模型日报 2024-06-08 大模型资讯 AI研究&#xff1a;通过消除矩阵乘法实现高效的大语言模型 摘要: 该AI研究探讨了通过消除矩阵乘法来实现高效且可扩展的大语言模型&#xff08;LLMs&#xff09;。此方法旨在提升模型性能&#xff0c;提供更快速和高效的计算方案。 AWS大力投…...

leetcode 1631.最小体力消耗路径

思路&#xff1a;BFS二分 这道题和洛谷上的那个“汽车拉力赛”那道题很相似&#xff0c;但是这道题相较于洛谷那个来说会简单一些。 这里作者一开始写的时候思路堵在了怎么在BFS中用二分&#xff0c;先入为主的以为需要先写出来搜索函数然后再去处理二分的事&#xff0c;但是…...

【ARM64 常见汇编指令学习 19.2 -- ARM64 地址加载指令 ADR 详细介绍】

文章目录 地址加载指令 ADRADR 指令使用场景例子注意事项 地址加载指令 ADR ARMv8 架构引入了一系列的改进和扩展&#xff0c;包括对汇编指令集的更新。在这之中&#xff0c;ADR 指令是一个重要的组成部分&#xff0c;它用于计算并加载一个地址到寄存器。 ADR 指令 ADR 指令…...

vscode输出控制台中文显示乱码最有效解决办法

当VSCode的输出控制台中文显示乱码时&#xff0c;一个有效的解决办法是通过设置环境变量来确保编码的正确性。以下是解决方式&#xff1a; 首先&#xff0c;设置环境变量以修正乱码问题&#xff1a; 如果上述方法没有解决乱码问题&#xff0c;请继续以下步骤&#xff1a; 右键…...

springboot + Vue前后端项目(第十五记)

项目实战第十五记 写在前面1.后端接口实现1.1 用户表添加角色字段1.2 角色表增加唯一标识字段1.3 UserDTO1.4 UserServiceImpl1.5 MenuServiceImpl 2. 前端实现2.1 User.vue2.2 动态菜单设计2.2.1 Login.vue2.2.2 Aside.vue 2.3 动态路由设计2.3.1 菜单表新增字段page_path2.3.…...

如何在Windows 11中恢复丢失的快速访问菜单?这里提供解决办法

序言 在电脑的“快速访问”菜单中找不到固定的项目?或者,整个菜单对你来说已经消失了吗?无论哪种方式,你都可以强制你的电脑恢复菜单并显示其中的所有项目。以下是如何在你的Windows 11电脑上做到这一点。 将文件资源管理器设置为打开到主页 当你在文件资源管理器的左侧…...

变声器软件免费版有哪些?国内外12大热门变声器大盘点!(新)

变声软件是一种人工智能AI音频处理工具&#xff0c;允许用户实时修改自己的声音或改变预先录制的音频。这些软件解决方案可提供不同的效果&#xff0c;如改变声音的音调或速度&#xff0c;或将我们的声音转换成其他人或其他东西的声音&#xff0c;如名人、卡通人物、机器人或不…...

计算机网络 —— 数据链路层(无线局域网)

计算机网络 —— 数据链路层&#xff08;无线局域网&#xff09; 什么是无线局域网IEEE 802.11主要标准及其特点&#xff1a; 802.11的MAC帧样式 我们来看看无线局域网&#xff1a; 什么是无线局域网 无线局域网&#xff08;Wireless Local Area Network&#xff0c;简称WLAN…...

SpringBoot图书管理系统【附:资料➕文档】

前言&#xff1a;我是源码分享交流Coding&#xff0c;专注JavaVue领域&#xff0c;专业提供程序设计开发、源码分享、 技术指导讲解、各类项目免费分享&#xff0c;定制和毕业设计服务&#xff01; 免费获取方式--->>文章末尾处&#xff01; 项目介绍048&#xff1a; 图…...

shell简介

一、Shell 概念定义 Shell 是用 C 语言编写的程序&#xff0c;是用户使用 Linux 的桥梁&#xff0c;既是命令语言又是程序设计语言。 shell 脚本为 Shell 编写的脚本程序&#xff0c;常说的 shell 通常指 shell 脚本。 包含一系列命令的文本文件&#xff0c;这些命令按照特定…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...