pytorch 笔记:pytorch 优化内容(更新中)
1 Tensor创建类
1.1 直接创建Tensor,而不是从Python或Numpy中转换
- 不要使用原生Python或NumPy创建数据,然后将其转换为
torch.Tensor 直接用torch.Tensor创建- 或者直接:torch.empty(), torch.zeros(), torch.full(), torch.ones(), torch.eye(), torch.randint(), torch.rand(), torch.randn()
1.2 直接在GPU中创建,减少.to(device)
ok的:
tensor = torch.rand([10, 5], device=torch.device('cuda:0'))
尽量避免的:
cuda_tensor.cpu()
cuda_tensor.to_device('cpu')
cpu_tensor.cuda()
cpu_tensor.to_device('cuda')
cpu_tensor.to(device)
1.3 使用 torch.from_numpy(numpy_array)和torch.as_tensor(others)代替 torch.tensor
torch.tensor()会拷贝数据
2 Dataloader类
2.1 pin_memory
Dataloader(dataset, pin_memory=True)
- 在深度学习中,使用GPU进行训练时经常需要将数据从CPU传输到GPU。
- 由于GPU无法直接访问CPU的可分页(非固定)内存,这会导致数据传输效率不高。
- 可分页内存是指操作系统可以将其页(即数据块)移出到虚拟内存的物理内存。
- 设置
pin_memory=True的作用是在数据从CPU传输到GPU之前,先将数据从可分页内存转移到固定内存(也称为页面锁定内存)。- 固定内存是一种特殊类型的内存,操作系统不会将其页移出到虚拟内存,这样GPU可以更快地访问这部分内存。
- 使用固定内存可以避免数据在传输过程中的额外拷贝,因此可以加快数据从CPU到GPU的传输速度。

3 其他
3.1 torch.backends.cudnn.benchmark 设置为 True
- 在深度学习中,卷积操作是最计算密集的部分之一。NVIDIA 的 cuDNN 库提供了多种卷积算法,每种算法都适用于不同的硬件和卷积配置(如内核大小、步幅、填充等)
-
当
torch.backends.cudnn.benchmark设置为False(默认值)时,PyTorch/cuDNN 会选择一个合适的、通用的卷积算法来执行操作,而不会根据具体的网络配置进行优化。-
这种选择通常比较保守,确保了在大多数情况下的可靠性。
-
-
当设置为
True时,PyTorch 会在程序第一次执行每种卷积配置时启用一个自动调优器,这个调优器通过实际运行不同的卷积算法来测试它们的性能。-
然后,它选择最快的算法,并在后续的训练过程中使用这一算法。
-
这个“基准测试”过程只在第一次遇到新的卷积配置时进行。
-
-
如果模型的输入大小(包括批大小、图像尺寸等)在整个训练过程中保持不变,开启
torch.backends.cudnn.benchmark通常可以带来性能提升。这是因为一旦为每种卷积配置选择了最优算法,就不需要再进行调整,每次执行同样的卷积操作都会使用这一最优算法。
参考内容:mp.weixin.qq.com/s?__biz=MzA4ODUxNjUzMQ==&mid=2247500198&idx=1&sn=0eb717d910f4e8452664ac520679b1e1&chksm=902a737aa75dfa6c3ea3e6fad7c4f4799304ccd4d21277d615e7200266775c8fdf480cb66f5a&scene=126&sessionid=1690516061#rd
相关文章:
pytorch 笔记:pytorch 优化内容(更新中)
1 Tensor创建类 1.1 直接创建Tensor,而不是从Python或Numpy中转换 不要使用原生Python或NumPy创建数据,然后将其转换为torch.Tensor直接用torch.Tensor创建或者直接:torch.empty(), torch.zeros(), torch.full(), torch.ones(), torch.…...
vue 创建一个新项目 以及 手动配置选项
【Vue】3.0 项目创建 自定义配置_vue3.0-CSDN博客...
c#快速获取超大文件夹文件名
c#快速获取超大文件夹文件名 枚举集合速度快:(10万个文件) //by txwtech IEnumerable<string> files2 Directory.EnumerateFiles("d:\aa", "*.xml", SearchOption.TopDirectoryOnly);//过滤指定查询xml文件 慢: var fi…...
华为OD技术面试-最小异或-2024手撕代码真题
题目:最小异或 给你两个正整数 num1 和 num2 ,找出满足下述条件的正整数 x : x 的置位数和 num2 相同,且 x XOR num1 的值 最小 注意 XOR 是按位异或运算。 返回整数 x 。题目保证,对于生成的测试用例, x 是 唯一确定 的。 整数的 置位数 是其二进制表示中 1 的数目。 示…...
基于SpringBoot+Vue单位考勤系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,还…...
Anaconda软件:安装、管理python相关包
Anaconda的作用 一个python环境中需要有一个解释器, 和一个包集合. 解释器: 根据python的版本大概分为2和3. python2和3之间无法互相兼容, 也就是说用python2语法写出来的脚本不一定能在python3的解释器中运行. 包集合:包含了自带的包和第三方包, 第三…...
pinia 重置状态插件
一、前言 测试提出,登出登录后,再次进入页面后。页面的查询项非初始状态。检查后发现,是因为查询项的值存到了store呢,从store中获取,故需要一个重置store的方法 二、pinia 查阅pinia官网后,发现pinia提…...
一千题,No.0049(跟奥巴马一起编程)
美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统。2014 年底,为庆祝“计算机科学教育周”正式启动,奥巴马编写了很简单的计算机代码:在屏幕上画一个正方形。现在…...
《python程序语言设计》2018版第5章第46题均值和标准方差-上部(我又一次被作者的出题击倒)
第N次被作者打倒了,第5章46题解题上集的记录 计算均值的代码段 step_num 0num_c 0 pow_c 0 while step_num < 10:a eval(input("Enter number is: "))num_c apow_c pow(a, 2)step_num 1 t2 num_c / 10这个结果和书里的答案差一点。书里写的是…...
自己做的精灵图制作,图片合成,卓宠,窗口置顶,磁力链下载等工具软件
欢迎使用和提bug,才v1.0.2,有新奇的自己需要的功能可以提给我,我看看能不能做。 网站地址 github...
C++协程
什么是协程 协程(Coroutine)是程序组件,可以在执行过程中暂停并在稍后继续执行。与传统的子例程(如函数或过程)不同,子例程一旦调用,必须等其返回后才能继续执行调用它的代码。协程则可以在执行…...
linux系统——ping命令
ping命令可以用来判断对远端ip的连通性,可以加域名也可以加公共ip地址 这里发送出56字节,返回64字节...
vue3第三十七节(自定义插件之自定义指令)防重指令
引言:自定义指令,我们可以通过插件的形式进行全局注册: 例如:在提交按钮请求接口时候,为了防止重复提交,而导致的请求资源浪费,或者是新增提交时候,防止新增相同的数据。 我们的全局…...
面试高频问题----5
一、线程池参数的执行顺序 1.如果线程池中的线程数量小于核心线程数,则创建新的线程来处理任务 2.如果线程池中的线程数量等于核心线程数,但工作队列未满,将任务放入工作队列中执行 3.如果工作队列已满,但线程数小于最大线程数…...
计算机网络 —— 网络层(子网掩码和子网划分)
计算机网络 —— 网络层(子网掩码和子网划分) 网络地址转换NAT子网掩码和子网划分举个例子第一步:看类型第二步:从主机号开始比对第三步:去头去尾 我们今天来看子网掩码和子网划分: 网络地址转换NAT 网络…...
2024 IDEA最新永久使用码教程(2099版)
本篇文章我就来分享一下2024年当前最新版 IntelliJ IDEA 最新注册码,教程如下,可免费永久,亲测有效,适合Windows和Mac。 本教程适用于 J B 全系列产品,包括 Pycharm、IDEA、WebStorm、Phpstorm、Datagrip、RubyMine、…...
http协议,tomcat的作用
HTTP 概念:Hyper Text Transfer Protocol,超文本传输协议,规定了浏览器和服务器之间数据传输的规则。 特点: 1.基于TCP协议:面向连接,安全 2. 基于请求-响应模型的:一次请求对应一次响应 3HTTP协议是无状态的协议:对于事务处理没有记忆能…...
有哪些针对平台端口的常见攻击手段
针对平台端口的攻击可以通过多种手段进行,这些手段涵盖了从扫描探测到利用漏洞入侵的整个过程。以下是一些常见的攻击手段及其简要描述: 端口扫描攻击: 攻击者使用端口扫描工具(如Nmap)探测目标系统开放的端口。通过分…...
Xcode下载安装
1.Xcode可用版本判断: 2.Xcode下载安装: 方案1:AppStore 下载更新 若方案1失败则 方案2:指定版本Xcode包下载解压安装 苹果下载 3.Xcode命令行工具插件安装 xcode-select --install 备注: xcode_x.x.x.xip(压缩包存在时效性(使用前24h/…...
【 k8s 标签与选择器 】
一、标签(Label) 用于给Kubernetes资源(如Pod、Service、Deployment等)打上自定义的键值对标识。以便更方便地管理和操作这些资源。 在各类资源的 metadata.labels 中进行配置。可以通过改配置文件的方式打标签。 apiVersion: v1…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
