当前位置: 首页 > news >正文

支持向量机(SVM): 从理论到实践的指南(1)

支持向量机(SVM)被誉为数据科学领域的重量级算法,是机器学习中不可或缺的工具之一。SVM以其优秀的泛化能力和对高维数据的管理而备受推崇。本文旨在梳理SVM的核心概念以及其在实际场景中的应用。

SVM的核心理念

SVM专注于为二分类问题找到最佳决策边界,即超平面,该平面能最大化两类数据之间的空隙或间隔。线性SVM假设用一个直线(或高维空间中的超平面)足以有效地分隔数据。当遇到重叠或杂乱无章散布的数据时,软间隔SVM允许某些点位于错误的边界一侧,这通过引入松弛变量与罚项系数C来实现,从而提供一个稳健的平衡方案。

算法实现

SVM通过转化优化问题为其对偶形式并使用拉格朗日乘子法来解决。这不仅简化了求解过程,还能自然地加入核技巧(Kernel trick)来处理非线性可分的数据集。
详细算法描述>>>>

一个经典案例

为了具体说明SVM的应用,我们考虑了一个著名的数据集。

  1. 鸢尾花分类:鸢尾花数据集由三个品种的鸢尾花构成,每一种都有50个样本和4个特征。对于二分类任务,我们专注于将Setosa从Versicolour中区分出来。

实践应用

利用MindOpt APL,一种强大的代数建模语言和求解器,我们可以更高效地构建和解决SVM优化问题。在训练阶段,算法学习数据的模式,并找到分隔不同类别的最优决策边界。一旦模型确定,我们便可用其做出预测并评估其在未见数据上的性能。

clear model;####################################################
#
#   Vectorization Modeling Example
#   Linear SVM
#
####################################################option modelname svm_02; #定义存储文件名# ----------建模--------Start----
# svm_02.mapl# 1.读取iris的用于构建SVM模型的训练数据
param data_dir = "./data/iris_data-train.csv";
param X = read_csv( data_dir, use_col="0,1,2,3",skip=1);
param y = read_csv( data_dir, use_col=4,skip=1);
param dataNum = X.row;
param dataDim = X.col;
print "总共有{}个数据,每个数据有{}维"%dataNum,dataDim;# 2.LinearSVM问题建模
param C_rho = 0.2;
print "Param C is :{}"%C_rho;print "Start modeling-------";var w(dataDim) >= -1 <= 1; # Bounded Model Parameter
var b; #
var eps(dataNum) >= 0;minimize 1/2 * w' * w + C_rho * sum(eps); #'是转置,目标函数subto constraint:eps >= 1 - (X*w +b).*y; #注意是向量化建模,因此相当于多条维度的约束# 3.调用求解器求解
print "Start solving-------";
option solver mindopt;
solve;# 4. 超平面的w取值
print "- Optimal w is:";
print w;
print "- Optimal b is:";
print b;
print "- eps is:";
forall { i in 0..dataNum-1 with eps[i] > 0.001}print "  - eps[{}] = {} "%i,eps[i];param obj_total_loss =  1/2 * w' * w + C_rho * sum(eps); #'是转置
print "- obj of total loss is : {}"%obj_total_loss;# 5.验证并分析结果print "";
print "验证结果:-----";param correctNum = sum{i in 0..dataNum-1} if((sum{j in 0..dataDim-1}w[j]*X[i, j]) +b )* y[i] > 0 then 1 else 0 end;
param precision = correctNum / dataNum;
print "- Precision for train data is : {:.2f}" % precision;#
print "";
print "导入测试数据验证效果:-----";param data_dir_test = "./data/iris_data-test.csv";
param X_test = read_csv( data_dir_test, use_col="0,1,2,3",skip=1);
param y_test = read_csv( data_dir_test, use_col=4,skip=1);
param dataNum_test = X_test.row;
param dataDim_test = X_test.col;
print "- 总共有{}个数据,每个数据有{}维"%dataNum_test,dataDim_test;print "|测试数据ID|实际标签|SVM预测标签是|";
print "|--|--|--|";
forall {i in 0..dataNum_test-1}
print "|{}|{}|{}|"%i,y_test[i], if((sum{j in 0..dataDim_test-1}w[j]*X_test[i, j]) +b ) > 0 then 1 else -1 end;

运行上述代码结果如下:

总共有80个数据,每个数据有4维
Param C is :0.2
Start modeling-------
Start solving-------
Running mindoptampl
wantsol=1
MindOpt Version 1.2.1 (Build date: 20240428)
Copyright (c) 2020-2024 Alibaba Cloud.Start license validation (current time : 29-APR-2024 17:51:11).
License validation terminated. Time : 0.007sModel summary.- Num. variables     : 85- Num. constraints   : 80- Num. nonzeros      : 480- Bound range        : [1.0e+00,1.0e+00]- Quad. bound range  : [1.0e+00,1.0e+00]- Objective range    : [2.0e-01,2.0e-01]- Quad. obj. range   : [1.0e+00,1.0e+00]- Matrix range       : [1.0e-01,7.0e+00]Presolver started.
Presolver terminated. Time : 0.000sInterior point method started.Iter         PrimObj         DualObj PrimFea DualFea  GapFea      Mu   Time0 +1.56581101e+01 -1.06624290e+01 2.0e-01 2.6e-01 2.5e+00 6.2e-01   0.02s1 +8.56566249e+00 -7.16779185e-01 5.4e-04 7.6e-03 9.3e+00 6.5e-02   0.04s2 +9.75513434e-01 +2.94267093e-01 2.7e-05 1.4e-03 6.8e-01 4.1e-03   0.05s3 +5.98630319e-01 +4.50898225e-01 4.2e-06 1.5e-04 1.5e-01 8.9e-04   0.05s4 +5.12227038e-01 +4.88329845e-01 1.1e-08 1.2e-03 2.5e-02 1.5e-04   0.05s5 +5.04653750e-01 +5.01437631e-01 9.7e-10 2.0e-04 3.2e-03 1.9e-05   0.06s6 +5.02835294e-01 +5.02808740e-01 2.7e-12 5.4e-07 2.7e-05 1.6e-07   0.06s7 +5.02821164e-01 +5.02821090e-01 7.1e-15 1.5e-09 7.3e-08 4.4e-10   0.06s8 +5.02821125e-01 +5.02821124e-01 1.9e-16 4.1e-12 2.0e-10 1.2e-12   0.06s
Terminated.- Method             : Interior point method.- Primal objective   : 5.0282112458779E-01- Dual objective     : 5.0282112438583E-01- Num. threads       : 4- Num. iterations    : 8- Solver details     : Solver terminated with a primal/dual optimal status.Interior point method terminated. Time : 0.046sOPTIMAL; objective 0.50
0 simplex iterationsCompleted.
- Optimal w is:
[[-0.16610],[ 0.35465],[-0.75422],[-0.32403]]
- Optimal b is:
2.038087831121987
- eps is:- eps[23] = 0.08284647160625058 - eps[24] = 0.05118542249112839 - eps[47] = 0.26241815907236044 - eps[69] = 0.04962685713002854 
- obj of total loss is : 0.5028211245877855验证结果:-----
- Precision for train data is : 1.00导入测试数据验证效果:-----
- 总共有20个数据,每个数据有4|测试数据ID|实际标签|SVM预测标签是|
|--|--|--|
|0|1|1|
|1|1|1|
|2|1|1|
|3|1|1|
|4|1|1|
|5|1|1|
|6|1|1|
|7|1|1|
|8|1|1|
|9|1|1|
|10|-1|-1|
|11|-1|-1|
|12|-1|-1|
|13|-1|-1|
|14|-1|-1|
|15|-1|-1|
|16|-1|-1|
|17|-1|-1|
|18|-1|-1|
|19|-1|-1|

结果

上面的程序运行结果如下:
其中,小数后几位是精度影响,每次会有变化,不影响结果。


总共有80个数据,每个数据有4维
Param C is :0.2
……

  • Optimal w is: [[-0.16610], [ 0.35465], [-0.75422], [-0.32403]]
  • Optimal b is: 2.038087831122001
  • eps is:
    • eps[23] = 0.08284647160625147
    • eps[24] = 0.051185422491125426
    • eps[47] = 0.26241815907236443
    • eps[69] = 0.049626857130028075
  • obj of total loss is : 0.5028211245877853

验证结果:-----

  • Precision for train data is : 1.00

导入测试数据验证效果:-----

  • 总共有20个数据,每个数据有4维
  • 测试数据ID实际标签SVM预测标签是
    011
    111
    211
    311
    411
    511
    611
    711
    811
    911
    10-1-1
    11-1-1
    12-1-1
    13-1-1
    14-1-1
    15-1-1
    16-1-1
    17-1-1
    18-1-1
    19-1-1

可以看到,对于这份数据,计算的超平面能很好地进行二分类,在测试集合上也有100%的正确率,证实了SVM在实际问题中的有效性。

相关文章:

支持向量机(SVM): 从理论到实践的指南(1)

支持向量机&#xff08;SVM&#xff09;被誉为数据科学领域的重量级算法&#xff0c;是机器学习中不可或缺的工具之一。SVM以其优秀的泛化能力和对高维数据的管理而备受推崇。本文旨在梳理SVM的核心概念以及其在实际场景中的应用。 SVM的核心理念 SVM专注于为二分类问题找到最…...

万字长文|OpenAI模型规范(全文)

本文是继《OpenAI模型规范概览》之后对OpenAI Model Spec的详细描述&#xff0c;希望能对各位从事大模型及RLHF研究的朋友有帮助。万字长文&#xff0c;建议收藏后阅读。 一、概述 在AI的世界里&#xff0c;确保技术的行为符合我们的期望至关重要。OpenAI最近发布了一份名为Mo…...

微服务架构-正向治理与治理效果

目录 一、正向治理 1.1 概述 1.2 效率治理 1.2.1 概述 1.2.2 基于流量录制和回放的测试 1.2.3 基于仿真环境的测试 1.3 稳定性治理 1.3.1 概述 1.3.2 稳定性治理模型 1.3.3 基于容器化的稳定性治理 1.3.3.1 概述 1.3.3.2 测试 1.3.3.3 部署 1.3.3.3.1 概述 1.3.3…...

normalizing flows vs 直方图规定化

normalizing flows名字的由来 The base density P ( z ) P(z) P(z) is usually defined as a multivariate standard normal (i.e., with mean zero and identity covariance). Hence, the effect of each subsequent inverse layer is to gradually move or “flow” the da…...

vite打包优化常用的技巧及思路

面试题&#xff1a;vitevue项目如何进行优化&#xff1f; 什么情况下会去做打包优化&#xff1f;一种是在搭建项目的时候就根据自己的经验把vite相关配置给处理好&#xff0c;另外一种是开发的过程中发现打包出来的静态资源越来越大&#xff0c;导致用户访问的时候资源加载慢&a…...

k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)HPA详细解释与案例应用

文章目录 前言HPA简介简单理解详细解释HPA 的工作原理监控系统负载模式HPA 的优势使用 HPA 的注意事项应用类型 应用环境1.metircs-server部署2.HPA演示示例&#xff08;1&#xff09;部署一个服务&#xff08;2&#xff09;创建HPA对象&#xff08;3&#xff09;执行压测 前言…...

台式机ubuntu22.04安装nvidia驱动

总结一个极简易的安装方法 正常安装ubuntu 22.04正常更新软件 sudo apt update sudo apt upgrade -y参考ubuntu官方网站的说明https://ubuntu.com/server/docs/nvidia-drivers-installation#/ # 首先检查系统支持驱动的版本号 sudo ubuntu-drivers list我显示的内容如下&…...

C++ 11 【线程库】【包装器】

&#x1f493;博主CSDN主页:麻辣韭菜&#x1f493;   ⏩专栏分类&#xff1a;C修炼之路⏪   &#x1f69a;代码仓库:C高阶&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多C知识   &#x1f51d;&#x1f51d; 目录 前言 一、thread类的简单介绍 get_id…...

可视化数据科学平台在信贷领域应用系列四:决策树策略挖掘

信贷行业的风控策略挖掘是一个综合过程&#xff0c;需要综合考虑风控规则分析结果、效果评估、线上实时监测和业务管理需求等多个方面&#xff0c;以发现和制定有效的信贷风险管理策略。这些策略可能涉及贷款审批标准的调整、贷款利率的制定、贷款额度的设定等&#xff0c;在贷…...

数据查询深分页优化方案

大家好&#xff0c;我是冰河~~ 最近不少小伙伴在实际工作过程中&#xff0c;遇到了单表大数据量分页的问题&#xff0c;问我怎么优化分页查询。其实&#xff0c;这就是典型的深分页问题。今天趁着周末&#xff0c;给大家整理一些在深分页场景的简单处理方案。 一、普通分页查…...

Redis的主从复制

Redis主从复制是 Redis 内置的⼀种数据冗余和备份⽅式&#xff0c;同时也是分发读查询负载的⼀种⽅法。通过主从复制&#xff0c;可以有多个从服务器&#xff08;Slave &#xff09;复制⼀个主服务器&#xff08;Master &#xff09;的数据。在这个系统中&#xff0c;数据的复制…...

网络安全实战基础——实战工具与攻防环境介绍

一、实战集成工具 1. 虚拟机 VMware Workstation&#xff1a;大家熟知的虚拟机 Virtual Box&#xff1a;开源免费、轻量级 2. Kali Linux 工具集 信息收集 Nmap&#xff1a;免费开放的网络扫描和嗅探包&#xff0c;可探测主机是否在线&#xff0c;扫描主机端口和嗅探网络…...

vue2组件封装实战系列之tag组件

作为本系列的第一篇文章&#xff0c;不会过于的繁杂&#xff0c;并且前期的组件都会是比较简单的基础组件&#xff01;但是不要忽视这些基础组件&#xff0c;因为纵观elementui、elementplus还是其他的流行组件库&#xff0c;组件库的封装都是套娃式的&#xff0c;很多复杂组件…...

VBA实战(Excel)(4):实用功能整理

1.后台打开Excel 用于查数据&#xff0c;工作中要打开多个表获取数据再关闭的场景&#xff0c;利用此函数可以将excel表格作为后台数据库查询&#xff0c;快速实现客户要求&#xff0c;缺点是运行效率不够高。 Sub openexcel(exl_name As String)If Dir(addr, 16) Empty Then…...

nginx mirror流量镜像详细介绍以及实战示例

nginx mirror流量镜像详细介绍以及实战示例 1.nginx mirror作用2.nginx安装3.修改配置3.1.nginx.conf3.2.conf.d目录下添加default.conf配置文件3.3.nginx配置注意事项3.3.nginx重启 4.测试 1.nginx mirror作用 为了便于排查问题&#xff0c;可能希望线上的请求能够同步到测试…...

Android14 WMS-窗口添加流程(二)-Server端

Android14 WMS-窗口添加流程(一)-Client端-CSDN博客 本文接着上文"Android14 WMS-窗口添加流程(一)-Client端"往下讲。也就是WindowManagerService#addWindow流程。 目录 一. WindowManagerService#addWindow 标志1&#xff1a;mPolicy.checkAddPermission 标志…...

【传知代码】DETR[端到端目标检测](论文复现)

前言&#xff1a;想象一下&#xff0c;当自动驾驶汽车行驶在繁忙的街道上&#xff0c;DETR能够实时识别出道路上的行人、车辆、交通标志等目标&#xff0c;并准确预测出它们的位置和轨迹。这对于提高自动驾驶的安全性、减少交通事故具有重要意义。同样&#xff0c;在安防监控、…...

Edge浏览器十大常见问题,一次性解决!

Edge曾被称为最好用的浏览器&#xff0c;拳打Chrome脚踢firefox, 可如今却隐藏着像是播放卡顿、下载缓慢、广告繁多等诸多问题&#xff0c;不知道各位还在用吗&#xff1f; 今天小编收集整理了Edge浏览器十大烦人问题&#xff0c;并提供简单有效的解决办法&#xff0c;让你的E…...

lubuntu / ubuntu 配置静态ip

一、查看原始网络配置信息 1、获取网卡名称 ifconfig 2、查询网关IP route -n 二、编辑配置文件 去/etc/netplan目录找到配置文件&#xff0c;配置文件名一般为01-network-manager-all.yaml sudo vim /etc/netplan/01-network-manager-all.yaml文件打开后内容如下 # This …...

15、matlab绘图汇总(图例、标题、坐标轴、线条格式、颜色和散点格式设置)

1、plot()函数默认格式画图 代码&#xff1a; x0:0.1:20;%绘图默认格式 ysin(x); plot(x,y) 2、X轴和Y轴显示范围/axis()函数 代码&#xff1a; x0:0.1:20;%绘图默认格式 ysin(x); plot(x,y) axis([0 21 -1.1 1.1])%设置范围 3、网格显示/grid on函数 代码&#xff1a; …...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...