当前位置: 首页 > news >正文

Mysql使用中的性能优化——批量插入的规模对比

在《Mysql使用中的性能优化——单次插入和批量插入的性能差异》中,我们观察到单次批量插入的数量和耗时呈指数型关系。
在这里插入图片描述
这个说明,不是单次批量插入的数量越多越好。本文我们将通过实验测试出本测试案例中最佳的单次批量插入数量。

结论

本案例中约每次插入2000~5000条数据时耗时最少。

实验数据

在这里插入图片描述

可以看到“单次批量中数量”和耗时呈U型曲线关系
如果单次批量中数量过少,效率会接近于单次插入,效率会收到很大影响。
如果单次批量中数量过多,效率也会快速增加。

测试环境

见《Mysql使用中的性能优化——搭建Mysql的监测服务》

测试脚本

DROP DATABASE IF EXISTS testdb;
CREATE DATABASE IF NOT EXISTS testdb;
USE testdb;DROP TABLE IF EXISTS test_insert;
CREATE TABLE test_insert (id SERIAL PRIMARY KEY,name TEXT
) engine=InnoDB;DROP PROCEDURE IF EXISTS test_insert_proc_batch_bulk;
DELIMITER //
CREATE PROCEDURE test_insert_proc_batch_bulk(IN name TEXT, IN fromNum INT, IN toNum INT)
BEGINDECLARE i INT DEFAULT fromNum;DECLARE new_names TEXT DEFAULT '';SET @sql = 'INSERT INTO test_insert (name) VALUES ';WHILE i < toNum DOSET new_names = CONCAT(name, i);SET i = i + 1;SET @sql = CONCAT(@sql, '("', new_names, '"),');END WHILE;SET @sql = LEFT(@sql, LENGTH(@sql) - 1);PREPARE stmt FROM @sql;EXECUTE stmt;DEALLOCATE PREPARE stmt;COMMIT;
END //
DELIMITER ;DROP PROCEDURE IF EXISTS test_insert_proc_batch;
DELIMITER //
CREATE PROCEDURE test_insert_proc_batch(IN name TEXT, IN count INT, IN step INT)
BEGINDECLARE i INT DEFAULT 0;DECLARE new_name TEXT DEFAULT '';WHILE i < count DOSET new_name = CONCAT(name, i);CALL test_insert_proc_batch_bulk(new_name, i, i + step);SET i = i + step;END WHILE;COMMIT;
END //
DELIMITER ;TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 50);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 100);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 150);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 200);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 250);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 300);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 350);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 400);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 450);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 1000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 1500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 2000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 2500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 5000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 7500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 10000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 12500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 15000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 17500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 20000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 22500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 25000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 27500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 30000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 32500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 35000);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 37500);
TRUNCATE TABLE test_insert;
CALL test_insert_proc_batch('test', 100000, 40000);

测试结果原始数据

在这里插入图片描述

相关文章:

Mysql使用中的性能优化——批量插入的规模对比

在《Mysql使用中的性能优化——单次插入和批量插入的性能差异》中&#xff0c;我们观察到单次批量插入的数量和耗时呈指数型关系。 这个说明&#xff0c;不是单次批量插入的数量越多越好。本文我们将通过实验测试出本测试案例中最佳的单次批量插入数量。 结论 本案例中约每次…...

TCP为什么握手是三次,而挥手是四次

TCP&#xff08;传输控制协议&#xff09;使用三次握手&#xff08;3WHS&#xff09;来建立一个可靠的连接&#xff0c;并使用四次挥手&#xff08;4WHS&#xff09;来终止连接。以下是每个步骤的详细解释&#xff1a; 三次握手&#xff08;3WHS&#xff09;建立连接&#xff…...

前端面试题大合集9----TypeScript

目录 一、TypeScript 中静态类型的概念及其好处 二、如何在 TypeScript 的接口中定义可选属性&#xff1f; 三、解释 TypeScript 中联合类型的概念并提供示例 四、TypeScript 中的类型断言是什么&#xff1f; 五、TS中泛型是什么&#xff1f; 六、解释 TypeScript 中的“…...

Linux:动态库和静态库的编译与使用

目录 1.前言 2.静态链接库 3.静态链接库生成步骤 4.静态链接库的使用 5.动态链接库 6.动态链接库生成步骤 7.动态链接库的使用 8.动态链接库无法加载 9.解决动态链接库无法加载问题 前言 在《MinGW&#xff1a;从入门到链接库》博客中简单介绍了如何编译动态链接库和静态链接库…...

【Pyqt6 学习笔记】DIY一个二维码解析生成小工具

文章目录 Pycharm 配置QtDesignerPyUIC基本模板 代码示例依赖包main.pyscreen_shot_module.pyuntitled.pyuntitled.ui Pycharm 配置 摘自PyQT6的从零开始在Pycharm中配置与使用——蹦跑的蜗牛 pip install PyQt6 PyQt6-toolsQtDesigner File -> Settings -> External …...

关于xilinx srio ip复位问题

关于xilinx srio ip复位问题 语言 &#xff1a;Verilg HDL 、VHDL EDA工具&#xff1a; Vivado 关于xilinx srio ip复位问题一、引言二、FPGA 之间 srio通信复位处理复位时序不同步&#xff1a;SRIO 模块未正确初始化&#xff1a;等待复位完成的时间不足&#xff1a;SRIO 配置…...

04 uboot 编译与调试

新手不需要详细掌握 uboot,只需要知道它是一个什么东西即可,工作中也只是改一些参数而已。 1、uboot 是什么 Linux 系统要启动就必须需要一个 bootloader 程序,也就说芯片上电以后先运行一段 bootloader 程序。这段 bootloader 程序会先初始化 DDR 等外设,然后将 Linux 内…...

【机器学习】机器学习与医疗健康在智能诊疗中的融合应用与性能优化新探索

文章目录 引言机器学习与医疗健康的基本概念机器学习概述监督学习无监督学习强化学习 医疗健康概述疾病预测诊断辅助个性化治疗方案制定 机器学习与医疗健康的融合应用实时健康监测数据预处理特征工程 疾病预测与优化模型训练模型评估 诊断辅助与优化深度学习应用 个性化治疗方…...

在线OJ项目测试(selenium+Junit5)

目录 在线OJ项目测试的思维导图 在线OJ的UI自动化测试 测试一&#xff1a;检查未登录时的页面访问以及一些未登录时的非法操作 测试二&#xff1a;测试注册界面 测试三&#xff1a;测试登录界面 测试四&#xff1a;测试题目列表界面 测试五&#xff1a;测试题目详情界面…...

计算机系统基础笔记(12)——控制

前言 在持续输出ing 一、条件码 1.处理器状态&#xff08;x86-64&#xff0c;部分的&#xff09; 当前程序的执行信息 ◼ 临时数据 ◼ 运行时栈的位置&#xff08;栈顶&#xff09; ◼ 当前代码控制点的位置&#xff08;即将要执行的指令地址&#xff09; ◼ 最近一次指令执…...

使用RedissonClient的管道模式批量查询key

1.场景 遇到了一个场景&#xff0c;在客户给我们推送的数据中&#xff0c;咋1分钟左右&#xff0c;会有相同车辆vehicle 和时间 gpstime一样的数据&#xff0c;这类数据呢&#xff0c;我们认为是重复数据&#xff0c;需要过滤的 把相同 vehicle 和 gpstime 作为key存入到redis中…...

UR机器人通信汇总

文章目录 一、概述二、UR机器人通信2.1UR通信协议2.2 UR通信端口 三、UR机器人通信端口类型3.1 Modbus TCP端口&#xff08;502端口&#xff09;3.2 Dashboard端口&#xff08;29999端口&#xff09;3.3 上位机编程端口&#xff08;30001/30002/30003端口&#xff09;3.3.1 URS…...

AI学习指南机器学习篇-使用ID3算法构建决策树

AI学习指南机器学习篇-使用ID3算法构建决策树 介绍ID3算法 ID3&#xff08;Iterative Dichotomiser 3&#xff09;是一种用于构建决策树的经典机器学习算法。它是由Ross Quinlan于1986年提出的&#xff0c;是一种基于信息论的算法&#xff0c;用于从一组特征中选择最佳特征来…...

React实战(一)初始化项目、配置router、redux、axios

(一)初始化项目 1.安装项目 npx create-react-app 项目名 编译报错&#xff1a; 解决办法&#xff1a;安装最新的babel-preset-react-app npm install babel-preset-react-applatest 2.配置项目 (1)配置文件目录 (2)使用craco配置webpack.config npm install craco/crac…...

高质量 HarmonyOS 权限管控流程

高质量 HarmonyOS 权限管控流程 在 HarmonyOS 应用开发过程中&#xff0c;往往会涉及到敏感数据和硬件资源的调动和访问&#xff0c;而这部分的调用就会涉及到管控这部分的知识和内容了。我们需要对它有所了解&#xff0c;才可以在应用开发中提高效率和避免踩坑。 权限管控了…...

java里面封装https请求工具类2

其他写法 https://blog.csdn.net/weixin_44372802/article/details/132620809?spm1001.2014.3001.5501 encodeJson 是请求参数的密文格式&#xff08;大公司都是要对请求参数加密的&#xff09; ResponseBean 是自己或者对方定义的返回内容参数 public ResponseBean sendByEnc…...

前端面试题日常练-day59 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末 1. 在PHP中&#xff0c;以下哪个符号用于比较两个值的相等性&#xff1f; a) b) c) d) ! 2. PHP中的预定义变量$_POST用于获取什么类型的数据&#xff1f; a) 用户的输入数据 b) 浏览器发送的请…...

计算机小问题(4)--关闭联想电脑的小组件

打开联想软件管家&#xff0c;关闭即可 &#xff08;今天弄了好久才找到&#xff0c;记录一下&#xff09;...

mac无法读取windows分区怎么办 苹果硬盘怎么读取

对于Mac电脑用户但有Windows系统使用需求的&#xff0c;我们可以通过Boot Camp启动转换助理安装Windows分区这个方案来解决&#xff0c;不过因为两个系统的磁盘格式不同&#xff0c;相应的也会产生一些问题&#xff0c;例如无法正常读取windows分区。下面本文就详细说明mac无法…...

【设计模式】JAVA Design Patterns——State(状态模式)

&#x1f50d;目的 允许对象在内部状态改变时改变它的行为。对象看起来好像修改了它的类。 &#x1f50d;解释 真实世界例子 当在长毛象的自然栖息地观察长毛象时&#xff0c;似乎它会根据情况来改变自己的行为。它开始可能很平静但是随着时间推移当它检测到威胁时它会对周围的…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...