当前位置: 首页 > news >正文

正大国际期货:什么是主力合约?

一个期货品种,在同一时间段,会上市多个月份的合约, 由于主力合约交易量大,流动性高,一般建议新手交易主力合约。

 

主力合约通常指交易集中,流动性好的合约 ,即在一段时间内交易量和持仓量最大的一个合约。成熟期货市场的主力合约,一般是逐月轮换的,因此所有合约都有成为主力合约的机会。

我国现阶段,大部分品种形成了以1月、5月、9月份为主力合约的非连续性市场结构,未来当我国的期货市场参与者不断增多,可促进合约的流动性,可以给投资者移仓换月提供更多的选择。

交易主力合约,并不是交易者唯一的选择,但是主力合约流动性非常高,适合新手持有,远期合约开平仓时因缺少交易对手, 不易成交,所以建议投资者尽量减少持有远期不活跃合约!请知悉哦!

相关文章:

正大国际期货:什么是主力合约?

一个期货品种,在同一时间段,会上市多个月份的合约, 由于主力合约交易量大,流动性高,一般建议新手交易主力合约。 主力合约通常指交易集中,流动性好的合约 ,即在一段时间内交易量和持仓量最大的…...

codeforces round 949 div2

A Turtle and Piggy Are Playing a Game 题目&#xff1a; 思路&#xff1a;输出2的幂次b使得2^b为最大的不超过x的数 代码&#xff1a; #include <iostream>using namespace std;const int N 2e5 10;void solve() {int l, r;cin >> l >> r;if(r % 2) …...

分享美好,高清无阻 - 直播极简联网解决方案

1、需求背景 随着移动互联网、UGC模式和直播平台的发展&#xff0c;网络直播的门槛日益降低&#xff0c;越来越多的人希望成为直播的主角。基于物联网的户外直播无线联网解决方案应运而生&#xff0c;满足直播者的需求。 户外直播无线联网解决方案提供了无处不在的直播体验&a…...

贪心算法-加油站

一、题目描述 二、解题思路 1.运动过程分析 这里需要一个油箱剩余油量的变量resGas&#xff0c;初始化resGas0&#xff1b;还需要一个标记从什么位置当做初始位置的startIdx&#xff0c;初始化startIdx0。 我们从数组下标idx0处开始向后遍历&#xff0c;初始时startIdx0&#…...

【ArcGIS微课1000例】0116:将度-分-秒值转换为十进制度值(字段计算器VBA)

相关阅读:【ArcGIS微课1000例】0087:经纬度格式转换(度分秒转度、度转度分秒) 文章目录 一、计算方法二、计算案例一、计算方法 将度分秒转换为十进制度的简单等式: DD = (Seconds/3600) + (Minutes/60) + Degrees如果角度值是负数,则转换方法不同。其中一种方法是: …...

【中国开源生态再添一员】天工AI开源自家的Skywork

刚刚看到《AI高考作文出圈&#xff0c;网友票选天工AI居首》&#xff0c;没想到在Huggingface中发现了Skywork大模型。天工大模型由昆仑万维自研&#xff0c;是国内首个对标ChatGPT的双千亿级大语言模型&#xff0c;天工大模型通过自然语言与用户进行问答式交互&#xff0c;AI生…...

【机器学习300问】109、什么是岭回归模型?

在进行回归任务时间&#xff0c;可以能会遇到特征数量多于观测数量或某些特征变量之间相关性较高&#xff08;几乎线性相关&#xff09;时&#xff0c;标准的线性回归模型的系数估计可能非常不精确&#xff0c;可以理解成独立方程个数小于未知数个数此时方程有无穷多解。 例如&…...

FJSP:烟花算法(FWA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、烟花算法介绍 参考文献&#xff1a; Tan, Y. and Y. Zhu. Fireworks Algorithm for Optimization. in Advances in Swarm Intelligence. 2010. Berlin, Heidelberg: Springer Berlin Heidelberg. 二、烟花算法求解FJSP 2.1FJSP模型介绍 柔性作业车间调度问题(Flexible …...

C++11 列表初始化(initializer_list),pair

1. {} 初始化 C98 中&#xff0c;允许使用 {} 对数组进行初始化。 int arr[3] { 0, 1, 2 };C11 扩大了 {} 初始化 的使用范围&#xff0c;使其可用于所有内置类型和自定义类型。 struct Date {int _year;int _month;int _day;Date(int year, int month, int day):_year(year…...

Python3 笔记:字符串的 startswith() 和 endswith()

1、startswith() 方法用于检查字符串是否是以指定子字符串开头&#xff0c;如果是则返回 True&#xff0c;否则返回 False。如果参数 beg 和 end 指定了值&#xff0c;则在指定范围内检查。 语法&#xff1a;str.startswith(substr, beg0,endlen(string)) 参数&#xff1a; s…...

Web前端安全问题分类综合以及XSS、CSRF、SQL注入、DoS/DDoS攻击、会话劫持、点击劫持等详解,增强生产安全意识

前端安全问题是指发生在浏览器、单页面应用、Web页面等前端环境中的各类安全隐患。Web前端作为与用户直接交互的界面&#xff0c;其安全性问题直接关系到用户体验和数据安全。近年来&#xff0c;随着前端技术的快速发展&#xff0c;Web前端安全问题也日益凸显。因此&#xff0c…...

1.单选题 (2分)下列关于脚本的说法不正确的是( )。本题得分: 2分正确答案: A2.单选题 (2分)软件测试自动化的局限性不包含( )。本题得分: 2分

1.单选题 (2分) 下列关于脚本的说法不正确的是( )。 A 线性脚本是最复杂的脚本 B 结构化脚本具有较好的可读性、可重用性,易于维护 C 关键字驱动脚本在开发时,不关心基础函数,直接使用已定义好的关键字 D 数据驱动脚本将测试脚本和数据进行分离,同一个脚本可以针对不同的输…...

【Docker系列】跨平台 Docker 镜像构建:深入理解`--platform`参数

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

力扣1248.统计优美子数组

力扣1248.统计优美子数组 同930. 哈希表法 求前缀和 class Solution {public:int numberOfSubarrays(vector<int>& nums, int k) {int n nums.size();unordered_map<int,int> cnt;int res0,sum0;for(int i0,j0;i<n;i){cnt[sum] ;if(nums[i] & 1) …...

AI2THOR 2.1.0使用教程

一、安装和入门 1.1 AI2-THOR使用要求 操作系统&#xff1a; Mac OS X 10.9&#xff0c; Ubuntu 14.04显卡&#xff1a;DX9&#xff08;着色器型号 3.0&#xff09;或 DX11&#xff0c;功能级别为 9.3。CPU&#xff1a;支持 SSE2 指令集。Python 2.7 或 Python 3.5Linux 用户…...

在Nginx中配置php程序环境。

1、前言。   我一开始是想 搭建 Tomcat PHP 环境。   Tomcat并不能直接运行PHP&#xff0c;因为Tomcat是一个Java Web服务器&#xff0c;主要用于运行Java应用程序。但是&#xff0c;我们可以通过一些配置和工具来使Tomcat能够运行PHP。   在配置Tomcat支持PHP 项目的时…...

!力扣70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 1. 递归&#xff08;超时&#xff09; class Solution { public:int climbStairs(int n) {if(n1){return 1;}if(n2){return 2;}return climbStairs…...

Spring boot+vue前后端分离

目录 1、前端vue的搭建 2、后端项目的构建 pom文件中引入的jar包 yml文件用来配置连接数据库和端口的设置 application.property进行一些整合 service层 imp层 mapper 实体类 额外写一个类、解决跨域问题 3、测试 1、前端vue的搭建 建立项目的过程略 开启一个建立好…...

Python基础总结之列表转字符串

Python基础总结之列表转字符串 在Python中&#xff0c;将列表转换为字符串有多种方法&#xff0c;最常用的是使用str.join()方法。这里有一些示例&#xff1a; 使用str.join()方法 这是将列表转换为字符串的最直接和最常用的方法。你需要确保列表中的所有元素都是字符串类型…...

二分【1】二分查找框架 查找指定元素

目录 二分查找 基本思想 几种情况汇总 一。严格递增序列 1.查找本身 2.查找第一个大于等于自己的 3.查找第一个大于自己的 4.严格递减序列 二。有重复元素 1.取其中第一个出现的 2.取其中最后一个出现的 二分查找 基本思想 几种情况汇总 一。严格递增序列 1.查找本身…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...