当前位置: 首页 > news >正文

1奇函数偶函数

文章目录

  • 自变量
  • 有理化
  • 奇偶性
  • 周期性
  • 初等函数

自变量

自变量是x,这个还挺奇怪,记住就好

y = f ( e x + 1 ) y=f(e^x+1) y=f(ex+1) 里面 e x e^x ex 只算中间变量,自变量是x

做这些题,想到了以前高中的时候做数学题,不够扎实呀,要是足够扎实,绝对不是95分的分数,应该多少也能考个110分(2022年新高考一卷的数学比较难),只能往前看了,现在学知识或者干啥整的扎实一些,我现在回想以前的高中知识,其实不在于刷多少题目,我买了很多刷题的书,其实很多都没写过几个题,白白浪费了,利用好已有的资料,把每一个细节自己慢慢想清楚,应该是对我来说最好的

需要判断一个函数的奇偶性,首先要看定义域是否关于原点对称,虽然感觉考试的时候一般都是对称的

一个分式和零的大小关系,可以转换成乘式和零的大小关系,这个应该是比较自然而然的

老师说一个简单的知识点记不住没办法,以前一个初中英语老师说她记英语单词就一个办法,死记,重复,其实是这样的,用的多了其实怎么都能记住了,有时候说自己记不住只是找个借口罢了,还是用的不够多,比如说你好,这两个汉字,用的非常多,哪怕一个人很久不写字也不至于不会写这两字吧

有理化

看到一个带根号的式子,根号且有加或者减去一个东西,可以考虑分式上下同时乘以一个元素,就是用平方差公式进行分子有理化

奇偶性

双曲正弦,双曲余弦,反双曲正弦,这几个函数都比较常见,但是在电脑上打数学公式比较麻烦,等之后我摸索出来怎么方便的在电脑上打出这些数学公式,我就把这些公式打上来,貌似也是有一些语法,其实我之前写算法题的时候也打过一些,但是现在好久没写算法题了,也差不多忘光了

算了不等以后,就现在就开始用latex打数学公式
F ( x ) = f ( x ) + f ( − x ) 2 偶函数 F(x)=\frac{f(x)+f(-x)}{2} \ \ 偶函数 F(x)=2f(x)+f(x)  偶函数
F ( x ) = f ( x ) − f ( − x ) 2 奇函数 F(x)=\frac{f(x)-f(-x)}{2} \ \ 奇函数 F(x)=2f(x)f(x)  奇函数

上面两个公式记住,在判断奇函数偶函数的时候可能可以更加快速,因为给定的一个复杂函数可能可以拆开变成上面的形式

奇函数和偶函数相乘,或者就是排列组合,乘积得到的函数的奇偶性是什么,其实非常简单,把奇函数看成-1,偶函数看成1就好,之前看到这种结论还以为什么怪力乱神,其实想清楚之后挺简单

看网课,一下子就是两个小时,数据库也是,一看就是很长的时间,没一点儿战略耐心还真受不了

看完这个网课就去看数据库网课

周期性

哈哈有意思,做数学题用比较直观的办法硬算,在老师看来这叫做诱敌深入,比如说一个题,求三阶导数或者五阶导数,直接算确实能算,但是不是最巧妙的,最快速的办法,老师就是想让考生在这儿花一些时间,可能这可以制造一些区分度吧。所以那些在考场上可以快速写完卷子的人,其实不是他们的手速有多快,可能手速也挺快,但不是核心因素,核心因素是解题方法的差异,我们高中年级第一最后去清华的那个同学,据说是发卷子的前五分钟,都还没动笔,第一面生物试卷都全部写完了,开始动笔填完选择题就可以直接翻页

原函数以什么为周期,导函数也以什么为周期

初等函数

在这里插入图片描述
c o t x cot \ x cot x 是奇函数
在这里插入图片描述

t a n x tan \ x tan x

三角函数里面的割函数确确实实用的相对较少,图像可以不用记住,但是计算的时候需要记住, s e c x = 1 c o s x sec \ x=\frac{1}{cos \ x} sec x=cos x1,数学公式用专业的语法确实会好看一些,下次也不要用 cos x 这种标记,代码这样子写还行,数学的就用这种 c o s x cos \ x cos x ,注意是首字母不一样,求倒数就好,挺方便记忆的

s e c 2 x = 1 + t a n 2 x sec ^2x=1+tan^2x sec2x=1+tan2x
c s c 2 x = 1 + c o t 2 x csc^2x=1+cot^2x csc2x=1+cot2x
上面两个公式比较重要

知识过一遍记不住很正常,先留一个印象,以后需要用的时候,再去查就好了

相关文章:

1奇函数偶函数

文章目录 自变量有理化奇偶性周期性初等函数 自变量 自变量是x,这个还挺奇怪,记住就好 y f ( e x 1 ) yf(e^x1) yf(ex1) 里面 e x e^x ex 只算中间变量,自变量是x 做这些题,想到了以前高中的时候做数学题,不够扎实…...

什么情况下需要配戴助听器

以下几种情况需要考虑配戴助听器: 1、听力无波动3个月以上的感音神经性听力障碍。如:先天性听力障碍、老年性听力障碍、噪声性听力障碍、突聋的稳定期等,均可选配合适的助听器。 2、年龄方面。使用助听器没有严格的年龄限制,从出生数周的婴…...

Java 基础面试300题 (231-260)

Java 基础面试300题 (231-260) 231 String::toUpperCase是什么类型的方法引用? String::toUpperCase是任意方法引用的示例。它指的是String 类的toUpperCase方法,但不是指任何特定对象。 通常在遍历集合或流时使用。例如&#x…...

Hadoop3:MapReduce源码解读之Map阶段的Job任务提交流程(1)

3、Job工作机制源码解读 用之前wordcount案例进行源码阅读,debug断点打在Job任务提交时 提交任务前,建立客户单连接 如下图,可以看出,只有两个客户端提供者,一个是YarnClient,一个是LocalClient。 显然&a…...

Linux环境---在线安装MYSQL数据库

Linux环境—在线安装MYSQL数据库 一、使用步骤 1.安装环境 Mysql 驱动 8.0 需要 jdk1.8 才行。 JDK版本:1.8 参考文档 MYSQL版本:8.0.2 下载链接: https://pan.baidu.com/s/1MwXIilSL6EY3OuS7WtpySA?pwdg263 操作系统:CentOS 1.1 建立存…...

git本地配置及IDEA下Git合并部分文件

目录 1、IDEA 下 Git 合并部分文件 2、分支合并忽略特定文件步骤 3、git本地配置 1、IDEA 下 Git 合并部分文件 1.1Git 下存在两个分支,foo 和 bar 分支,想要把 bar 分支上的部分文件合并到 foo 分支: 首先切换到 foo 分支,点击右下角的 …...

安徽京准 NTP时钟同步服务器具体配置方法是什么?

安徽京准 NTP时钟同步服务器具体配置方法是什么? 安徽京准 NTP时钟同步服务器具体配置方法是什么? 可以使用特权终结点 (PEP) 来更新 Azure Stack Hub 中的时间服务器。 使用可解析为两个或更多个 NTP(网络时间协议)服务器 IP 地…...

微信小程序 画布canvas

属性说明 属性类型默认值必填说明最低版本typestring否指定 canvas 类型,支持 2d (2.9.0) 和 webgl (2.7.0)2.7.0canvas-idstring否canvas 组件的唯一标识符,若指定了 type 则无需再指定该属性1.0.0disable-scrollbooleanfalse否当在 canvas 中移动时且…...

leetcode-04-[24]两两交换链表中的节点[19]删除链表的倒数第N个节点[160]相交链表[142]环形链表II

一、[24]两两交换链表中的节点 重点:暂存节点 class Solution {public ListNode swapPairs(ListNode head) {ListNode dummyHeadnew ListNode(-1);dummyHead.nexthead;ListNode predummyHead;//重点:存节点while(pre.next!null&&pre.next.next…...

深入探讨 Java 18 的主要新特性,分析其设计理念和实际应用

Java 18 作为 Java 的最新版本,引入了一系列的新特性和改进,这些变化不仅提升了语言的性能和安全性,也为开发者提供了更多的工具和选项,简化了开发过程,提高了代码的可读性和维护性。本文将深入探讨 Java 18 的主要新特性,分析其设计理念和实际应用,帮助读者理解这些新特…...

qt4-qt5 升级(2)-GUI-UTF-8-GBK-QTextCode-字符集乱码

MFC与QT的消息机制的区别_qt信号槽机制与mfc的消息映射机制的区别-CSDN博客 1.QT4-QT5差别 kits构建 控件,信号与槽 ui修改好后点击编译会自动生成 ui_XXX.h 聚合的关系,不是拥有的关系。 QWidget 和QWindow有什么差别? 2.VS2019-QT5 构建…...

Qt Designer 生成的 .ui 文件转为 .py 文件并运行

1. 使用使用 PyUIC将 .ui 转 .py (1)打开命令行终端(可以用cmd,或pycharm 下面的 Terminal)。 (2)导航到包含.ui文件的目录。 cd 你的ui文件路径 (3)运行以下命令来…...

Dubbo 3.x源码(20)—Dubbo服务引用源码(3)

基于Dubbo 3.1,详细介绍了Dubbo服务的发布与引用的源码。 此前我们学习了调用createProxy方法,根据服务引用参数map创建服务接口代理引用对象的整体流程,我们知道会调用createInvokerForRemote方法创建远程引用Invoker,这是Dubbo …...

开发一个Dapp需要多少?

区块链开发一个Dapp要多少钱? 开发一个去中心化应用(Dapp)的成本取决于多个因素,包括Dapp的复杂性、功能需求、区块链平台以及开发团队的经验水平。以下是一些主要的影响因素: 1. 区块链平台:不同区块链…...

kNN算法-概述

所谓kNN算法就是K-nearest neigbor algorithm。这是似乎是最简单的监督机器学习算法。在训练阶段,kNN算法存储了标签训练样本数据。简单地说,就是调用训练方法时传递给它的标签训练样本会被它存储起来。 kNN算法也叫lazy learning algorithm懒惰学习算法…...

富格林:曝光纠正出金亏损陋习

富格林悉知,虽然现货黄金市场看似变化无常,在操作方向上依旧是有迹可循的,投资者需要了解曝光的专业经验纠正陋习阻止出金亏损。要获得优质的黄金投资出金效果,就需要在明确现货黄金操作技巧的前提下,只有规范遵循已曝…...

怎么用微信小程序实现远程控制空调

怎么用微信小程序实现远程控制空调呢? 本文描述了使用微信小程序调用HTTP接口,实现控制空调,通过不同规格的通断器,来控制不同功率的空调的电源。 可选用产品:可根据实际场景需求,选择对应的规格 序号设备…...

ES5/ES6 的继承除了写法以外还有什么区别?

一、主要区别 ES5 的继承实质上是先创建子类的实例对象, 然后再将父类的方法添加 到 this 上(Parent.apply(this)) . ES6 的继承机制完全不同, 实质上是先创建父类的实例对象 this(所以必 须先调用父类的 super()方法…...

LeetCode 第401场周赛个人题解

100325. 找出 K 秒后拿着球的孩子 原题链接 100325. 找出 K 秒后拿着球的孩子 思路分析 数据很小,暴力或者数学方法都行 数学方法就是对 n - 1做带余除法,看跑了奇数还是偶数趟,余数如何,确定位置 时间复杂度:O(…...

C#面:请解释web.config⽂件中的重要节点

在C#中&#xff0c;web.config文件是一个XML格式的配置文件&#xff0c;用于配置ASP.NET应用程序的各种设置。web.config文件中包含了许多重要的节点&#xff0c;下面是一些常见的重要节点及其作用&#xff1a; <configuration>节点&#xff1a;web.config文件的根节点&…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...