当前位置: 首页 > news >正文

Langchain的向量存储 - Document示例代码里的疑问

文章目录

  • 前言
  • 一、语句分析
  • 二、 举例解释
  • 三、 完整代码
  • 总结


前言

之前的代码里有下面这句话,可能有看不明白的读者。

vectors = [embeddings.embed(doc.page_content) for doc in docs]

今天一起来看下这句话。

一、语句分析

这句话实际上是一个列表推导式,它的作用是遍历 docs 列表中的每个 Document 对象,并将每个 Document 对象的 page_content 属性通过 embeddings.embed 方法转换为向量,然后将所有这些向量组成一个新的列表 vectors

具体的步骤如下:

  1. 遍历 docs 列表for doc in docs 表示依次取出 docs 列表中的每个 Document 对象并赋值给 doc
  2. 提取 page_content:对于每个 Document 对象 doc,提取其 page_content 属性(即文档的文本内容)。
  3. 嵌入转换:将提取到的文本内容通过 embeddings.embed 方法转换为向量。embeddings.embed(doc.page_content) 返回的是一个向量表示。
  4. 生成向量列表:将所有转换得到的向量组成一个新的列表,并将该列表赋值给 vectors 变量。

这句话不会替换原来的 doc 值,而是生成一个新的向量列表。每个向量对应于 docs 列表中每个 Document 对象的 page_content 的向量表示。

二、 举例解释

假设我们有以下 docs 列表:

docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]

执行这句代码后:

vectors = [embeddings.embed(doc.page_content) for doc in docs]

假设 embeddings.embed 方法将文本转换为一个简单的数值向量,那么 vectors 可能是:

vectors = [[0.1, 0.2, 0.3, 0.4],  # 向量表示 "Machine learning is a method of data analysis."[0.5, 0.6, 0.7, 0.8]   # 向量表示 "LangChain is a powerful framework."
]

三、 完整代码

以下是一个完整的示例,展示了从文档到向量转换的过程,大家可以一起练一练:

from langchain_core.documents import Document
from langchain.embeddings import OpenAIEmbeddings# 创建文档对象列表
docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]# 初始化嵌入模型
embeddings = OpenAIEmbeddings()# 将文档内容转换为向量
vectors = [embeddings.embed(doc.page_content) for doc in docs]# 输出向量列表
for i, vector in enumerate(vectors):print(f"Vector for doc {i+1}: {vector}")

总结

这句话的主要目的是将每个 Document 对象的文本内容转换为向量,并将所有这些向量组成一个新的列表 vectors,方便后续的向量存储和检索操作。它不会修改原来的 Document 对象,而是生成一个新的向量列表。

相关文章:

Langchain的向量存储 - Document示例代码里的疑问

文章目录 前言一、语句分析二、 举例解释三、 完整代码总结 前言 之前的代码里有下面这句话,可能有看不明白的读者。 vectors [embeddings.embed(doc.page_content) for doc in docs]今天一起来看下这句话。 一、语句分析 这句话实际上是一个列表推导式&#x…...

Docker 教程-介绍-2

快速了解docker有什么。 Docker简介 Docker 是一个开源的应用容器引擎,基于Go语言开发,并遵循Apache 2.0协议。它允许开发者将应用及其依赖包打包进一个可移植的容器中,这些容器可以发布到任何支持Docker的Linux或Windows机器上&#xff0c…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 伐木工(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 伐木工(200分) 🌍 评测功能需要订阅专栏后私信联系清隆解…...

UltraScale+系列模块化仪器,可以同时用作控制器、算法加速器和高速数字信号处理器

基于 XCZU7EG / XCZU4EG / XCZU2EG • 灵活的模块组合 • 易于嵌入的紧凑型外观结构 • 高性能的 ARM Cortex 处理器 • 成熟的 FPGA 可编程逻辑 ,基于 IP 核的软件库 基于 Xilinx Zynq UltraScaleMPSoC 的 FPGA 技术,采用 Xilinx Zynq UltraScale&a…...

Python与其他编程语言(如Java、C++)相比有哪些优势?

一、技术难点 在探讨Python与其他编程语言相比的优势时,技术难点在于如何全面、准确地把握并阐述这些优势。这需要对Python、Java、C等编程语言有深入的理解,包括它们的语法特性、应用领域、性能特点、开发效率等。 首先,Python的语法简洁明…...

Edge浏览器双击关闭标签页,双击关闭浏览器选项卡

设置》外观》自定义浏览器,开启“使用双击关闭浏览器选项卡” 设置里面搜索“双击”,这是最快的方式 鼠标滚轮单击 或者进入“设置”-“辅助功能” 呼吁已久的功能来了!Edge浏览器双击关闭标签页功能上线新 国产浏览器大多都有双击关闭标签页…...

C++ 贪心算法——跳跃游戏、划分字母区间

一:跳跃游戏 55. 跳跃游戏 题目描述:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true &#xff1…...

汽车数据应用构想(三)

上期说的,用数据去拟合停车信息的应用,那么类似的POI信息相关的场景其实都可以实现。今天讲讲用户使用频率也很高的加油/充电场景。 实际应用中,在加油场景中用户关心的通常还是价格。无论是导航还是各种加油APP/小程序,都已经很…...

体素技术在AI绘画中的革新作用

随着人工智能技术的不断进步,AI绘画已经成为艺术创作和视觉设计领域的一大趋势。在众多推动AI绘画发展的技术中,体素技术以其独特的优势,正在逐渐改变着我们对计算机生成图像的认识。本文旨在探讨体素技术在AI绘画中的应用与影响,…...

Leetcode.866 回文质数

题目链接 Leetcode.866 回文质数 rating : 1938 题目描述 给你一个整数 n n n ,返回大于或等于 n n n 的最小 回文质数。 一个整数如果恰好有两个除数: 1 1 1 和它本身,那么它是 质数 。注意, 1 1 1 不是质数。 例如&#xf…...

【论文阅读】Point2RBox (CVPR’2024)

paper:https://arxiv.org/abs/2311.14758 code:https://github.com/yuyi1005/point2rbox-mmrotate...

深度学习的点云分割

深度学习的点云分割 点云分割是计算机视觉中的一个重要任务,特别是在三维数据处理和分析中。点云数据是由大量三维点构成的集合,每个点包含空间坐标(x, y, z),有时还包含其他信息如颜色和法向量。点云分割的目标是将点…...

【知识点】c++模板特化

在 C 中,模板特化分为全特化(full specialization)和偏特化(partial specialization)。它们允许程序员为特定类型或类型模式提供不同的实现,以覆盖通用模板的默认行为。 模板全特化 模板全特化是指为某个…...

算法家族之一——二分法

目录 算法算法的打印效果如果算法里的整型“i”为1如果算法里的整型“i”为11 算法的流程图算法的实际应用总结 大家好&#xff0c;我叫 这是我58&#xff0c;现在&#xff0c;请看下面的算法。 算法 #define _CRT_SECURE_NO_WARNINGS 1//<--预处理指令 #include <stdi…...

【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文&#xff1a;https://arxiv.org/abs/2404.16022 代码&#xff1a;https://github.com/ToTheBeginning/PuLID 文章目录 AbstractIntroductionRelated WorkMethods Abstract 我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customizatio…...

Elastic 8.14:用于简化分析的 Elasticsearch 查询语言 (ES|QL) 正式发布

作者&#xff1a;来自 Elastic Brian Bergholm 今天&#xff0c;我们很高兴地宣布 Elastic 8.14 正式发布。 什么是新的&#xff1f; 8.14 版本最重要的标题是 ES|QL 的正式发布(GA)&#xff0c;它是从头开始设计和专门构建的&#xff0c;可大大简化数据调查。在新的查询引擎的…...

C语言指针与数组的区别

在C语言中&#xff0c;指针和数组虽然在很多情况下可以互换使用&#xff0c;但它们在概念上和行为上存在一些区别。下面详细解释这些区别&#xff1a; ### 数组 1. **固定大小**&#xff1a;数组在声明时必须指定大小&#xff0c;这个大小在编译时确定&#xff0c;之后不能改…...

springboot3一些听课笔记

文章目录 一、错误处理机制1.1 默认1.2 自定义 二、嵌入式容器 一、错误处理机制 1.1 默认 错误处理的自动配置都在ErrorMvcAutoConfiguration中&#xff0c;两大核心机制&#xff1a; ● 1. SpringBoot 会自适应处理错误&#xff0c;响应页面或JSON数据 ● 2. SpringMVC的错…...

【小沐学Python】Python实现Web服务器(CentOS下打包Flask)

文章目录 1、简介2、下载Python3、编译Python4、安装PyInstaller5、打包PyInstaller6、相关问题6.1 ImportError: urllib3 v2 only supports OpenSSL 1.1.1, currently the ssl module is compiled with OpenSSL 1.0.2k-fips 26 Jan 2017. See: https://github.com/urllib3/url…...

Cesium开发环境搭建(一)

1.下载安装Node.js 进入官网地址下载安装包 Node.js — Download Node.js https://cdn.npmmirror.com/binaries/node/ 选择对应你系统的Node.js版本&#xff0c;这里我选择的是Windows系统、64位 安装完成后&#xff0c;WINR&#xff0c;输入node --version&#xff0c;显示…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...