当前位置: 首页 > news >正文

Langchain的向量存储 - Document示例代码里的疑问

文章目录

  • 前言
  • 一、语句分析
  • 二、 举例解释
  • 三、 完整代码
  • 总结


前言

之前的代码里有下面这句话,可能有看不明白的读者。

vectors = [embeddings.embed(doc.page_content) for doc in docs]

今天一起来看下这句话。

一、语句分析

这句话实际上是一个列表推导式,它的作用是遍历 docs 列表中的每个 Document 对象,并将每个 Document 对象的 page_content 属性通过 embeddings.embed 方法转换为向量,然后将所有这些向量组成一个新的列表 vectors

具体的步骤如下:

  1. 遍历 docs 列表for doc in docs 表示依次取出 docs 列表中的每个 Document 对象并赋值给 doc
  2. 提取 page_content:对于每个 Document 对象 doc,提取其 page_content 属性(即文档的文本内容)。
  3. 嵌入转换:将提取到的文本内容通过 embeddings.embed 方法转换为向量。embeddings.embed(doc.page_content) 返回的是一个向量表示。
  4. 生成向量列表:将所有转换得到的向量组成一个新的列表,并将该列表赋值给 vectors 变量。

这句话不会替换原来的 doc 值,而是生成一个新的向量列表。每个向量对应于 docs 列表中每个 Document 对象的 page_content 的向量表示。

二、 举例解释

假设我们有以下 docs 列表:

docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]

执行这句代码后:

vectors = [embeddings.embed(doc.page_content) for doc in docs]

假设 embeddings.embed 方法将文本转换为一个简单的数值向量,那么 vectors 可能是:

vectors = [[0.1, 0.2, 0.3, 0.4],  # 向量表示 "Machine learning is a method of data analysis."[0.5, 0.6, 0.7, 0.8]   # 向量表示 "LangChain is a powerful framework."
]

三、 完整代码

以下是一个完整的示例,展示了从文档到向量转换的过程,大家可以一起练一练:

from langchain_core.documents import Document
from langchain.embeddings import OpenAIEmbeddings# 创建文档对象列表
docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]# 初始化嵌入模型
embeddings = OpenAIEmbeddings()# 将文档内容转换为向量
vectors = [embeddings.embed(doc.page_content) for doc in docs]# 输出向量列表
for i, vector in enumerate(vectors):print(f"Vector for doc {i+1}: {vector}")

总结

这句话的主要目的是将每个 Document 对象的文本内容转换为向量,并将所有这些向量组成一个新的列表 vectors,方便后续的向量存储和检索操作。它不会修改原来的 Document 对象,而是生成一个新的向量列表。

相关文章:

Langchain的向量存储 - Document示例代码里的疑问

文章目录 前言一、语句分析二、 举例解释三、 完整代码总结 前言 之前的代码里有下面这句话,可能有看不明白的读者。 vectors [embeddings.embed(doc.page_content) for doc in docs]今天一起来看下这句话。 一、语句分析 这句话实际上是一个列表推导式&#x…...

Docker 教程-介绍-2

快速了解docker有什么。 Docker简介 Docker 是一个开源的应用容器引擎,基于Go语言开发,并遵循Apache 2.0协议。它允许开发者将应用及其依赖包打包进一个可移植的容器中,这些容器可以发布到任何支持Docker的Linux或Windows机器上&#xff0c…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 伐木工(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 伐木工(200分) 🌍 评测功能需要订阅专栏后私信联系清隆解…...

UltraScale+系列模块化仪器,可以同时用作控制器、算法加速器和高速数字信号处理器

基于 XCZU7EG / XCZU4EG / XCZU2EG • 灵活的模块组合 • 易于嵌入的紧凑型外观结构 • 高性能的 ARM Cortex 处理器 • 成熟的 FPGA 可编程逻辑 ,基于 IP 核的软件库 基于 Xilinx Zynq UltraScaleMPSoC 的 FPGA 技术,采用 Xilinx Zynq UltraScale&a…...

Python与其他编程语言(如Java、C++)相比有哪些优势?

一、技术难点 在探讨Python与其他编程语言相比的优势时,技术难点在于如何全面、准确地把握并阐述这些优势。这需要对Python、Java、C等编程语言有深入的理解,包括它们的语法特性、应用领域、性能特点、开发效率等。 首先,Python的语法简洁明…...

Edge浏览器双击关闭标签页,双击关闭浏览器选项卡

设置》外观》自定义浏览器,开启“使用双击关闭浏览器选项卡” 设置里面搜索“双击”,这是最快的方式 鼠标滚轮单击 或者进入“设置”-“辅助功能” 呼吁已久的功能来了!Edge浏览器双击关闭标签页功能上线新 国产浏览器大多都有双击关闭标签页…...

C++ 贪心算法——跳跃游戏、划分字母区间

一:跳跃游戏 55. 跳跃游戏 题目描述:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true &#xff1…...

汽车数据应用构想(三)

上期说的,用数据去拟合停车信息的应用,那么类似的POI信息相关的场景其实都可以实现。今天讲讲用户使用频率也很高的加油/充电场景。 实际应用中,在加油场景中用户关心的通常还是价格。无论是导航还是各种加油APP/小程序,都已经很…...

体素技术在AI绘画中的革新作用

随着人工智能技术的不断进步,AI绘画已经成为艺术创作和视觉设计领域的一大趋势。在众多推动AI绘画发展的技术中,体素技术以其独特的优势,正在逐渐改变着我们对计算机生成图像的认识。本文旨在探讨体素技术在AI绘画中的应用与影响,…...

Leetcode.866 回文质数

题目链接 Leetcode.866 回文质数 rating : 1938 题目描述 给你一个整数 n n n ,返回大于或等于 n n n 的最小 回文质数。 一个整数如果恰好有两个除数: 1 1 1 和它本身,那么它是 质数 。注意, 1 1 1 不是质数。 例如&#xf…...

【论文阅读】Point2RBox (CVPR’2024)

paper:https://arxiv.org/abs/2311.14758 code:https://github.com/yuyi1005/point2rbox-mmrotate...

深度学习的点云分割

深度学习的点云分割 点云分割是计算机视觉中的一个重要任务,特别是在三维数据处理和分析中。点云数据是由大量三维点构成的集合,每个点包含空间坐标(x, y, z),有时还包含其他信息如颜色和法向量。点云分割的目标是将点…...

【知识点】c++模板特化

在 C 中,模板特化分为全特化(full specialization)和偏特化(partial specialization)。它们允许程序员为特定类型或类型模式提供不同的实现,以覆盖通用模板的默认行为。 模板全特化 模板全特化是指为某个…...

算法家族之一——二分法

目录 算法算法的打印效果如果算法里的整型“i”为1如果算法里的整型“i”为11 算法的流程图算法的实际应用总结 大家好&#xff0c;我叫 这是我58&#xff0c;现在&#xff0c;请看下面的算法。 算法 #define _CRT_SECURE_NO_WARNINGS 1//<--预处理指令 #include <stdi…...

【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文&#xff1a;https://arxiv.org/abs/2404.16022 代码&#xff1a;https://github.com/ToTheBeginning/PuLID 文章目录 AbstractIntroductionRelated WorkMethods Abstract 我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customizatio…...

Elastic 8.14:用于简化分析的 Elasticsearch 查询语言 (ES|QL) 正式发布

作者&#xff1a;来自 Elastic Brian Bergholm 今天&#xff0c;我们很高兴地宣布 Elastic 8.14 正式发布。 什么是新的&#xff1f; 8.14 版本最重要的标题是 ES|QL 的正式发布(GA)&#xff0c;它是从头开始设计和专门构建的&#xff0c;可大大简化数据调查。在新的查询引擎的…...

C语言指针与数组的区别

在C语言中&#xff0c;指针和数组虽然在很多情况下可以互换使用&#xff0c;但它们在概念上和行为上存在一些区别。下面详细解释这些区别&#xff1a; ### 数组 1. **固定大小**&#xff1a;数组在声明时必须指定大小&#xff0c;这个大小在编译时确定&#xff0c;之后不能改…...

springboot3一些听课笔记

文章目录 一、错误处理机制1.1 默认1.2 自定义 二、嵌入式容器 一、错误处理机制 1.1 默认 错误处理的自动配置都在ErrorMvcAutoConfiguration中&#xff0c;两大核心机制&#xff1a; ● 1. SpringBoot 会自适应处理错误&#xff0c;响应页面或JSON数据 ● 2. SpringMVC的错…...

【小沐学Python】Python实现Web服务器(CentOS下打包Flask)

文章目录 1、简介2、下载Python3、编译Python4、安装PyInstaller5、打包PyInstaller6、相关问题6.1 ImportError: urllib3 v2 only supports OpenSSL 1.1.1, currently the ssl module is compiled with OpenSSL 1.0.2k-fips 26 Jan 2017. See: https://github.com/urllib3/url…...

Cesium开发环境搭建(一)

1.下载安装Node.js 进入官网地址下载安装包 Node.js — Download Node.js https://cdn.npmmirror.com/binaries/node/ 选择对应你系统的Node.js版本&#xff0c;这里我选择的是Windows系统、64位 安装完成后&#xff0c;WINR&#xff0c;输入node --version&#xff0c;显示…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...