当前位置: 首页 > news >正文

在Windows上用Llama Factory微调Llama 3的基本操作

这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客

也可以参考Llama Factory的Readme:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMsUnify Efficient Fine-Tuning of 100+ LLMs. Contribute to hiyouga/LLaMA-Factory development by creating an account on GitHub.icon-default.png?t=N7T8https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#installation首先将Llama Factory clone到本地:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs 

其次创建一个conda环境:

conda create -n llama_factory python=3.10

激活环境后首先安装pytorch,具体参考这个页面:Start Locally | PyTorch,例如:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

而后进入到LLaMA-Factory文件夹,参考其Readme,运行:

pip install -e .[torch,metrics]

同时,按照其Readme,在Windows系统上还需要运行:

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl

具体原因我就不展开讲了。然后依次运行:

Set CUDA_VISIBLE_DEVICES=0
Set GRADIO_SHARE=1
llamafactory-cli webui

就可以看到其webui了。不过这时候还没有模型参数文件,对于国内用户而言,可以在这里https://modelscope.cn/organization/LLM-Researchicon-default.png?t=N7T8https://modelscope.cn/organization/LLM-Research

进行下载,例如可以下载Llama3中文版本(如果没有git lfs可以用前两个命令安装):

conda install git-lfs
git-lfs install
git lfs clone https://www.modelscope.cn/LLM-Research/Llama3-8B-Chinese-Chat.git

下载好之后,可以构造自己的微调数据集,具体而言,按照这里的介绍:

https://github.com/hiyouga/LLaMA-Factory/tree/main/data

Llama Factory支持alpaca and sharegpt的格式,前者类似于这种格式:

[{"instruction": "human instruction (required)","input": "human input (optional)","output": "model response (required)","system": "system prompt (optional)","history": [["human instruction in the first round (optional)", "model response in the first round (optional)"],["human instruction in the second round (optional)", "model response in the second round (optional)"]]}
]

我们构造数据集的时候,最简单的方法就是只构造instruction和output。把生成的json文件放到LLaMA-Factory\data目录下,然后打开dataset_info.json文件,增加这个文件名记录即可,例如我这里增加:

  "private_train": {
    "file_name": "private_train.json"
  },

选择自己的私有数据集,可以预览一下,然后就可以开始训练了。

训练完成后切换到Export,然后在上面的“微调方法”——“检查点路径”中选择刚才存储的目录Train_2024_xxxx之类,然后指定导出文件的目录,然后就可以导出了。

导出之后我们可以加载微调之后的模型并测试了。当然,如果训练数据集比较小的话,测试的效果也不会太好。如果大家只是想对微调效果和特定问题进行展示,可以训练模型到过拟合,呵呵呵。

就记录这么多。

相关文章:

在Windows上用Llama Factory微调Llama 3的基本操作

这篇博客参考了一些文章,例如:教程:利用LLaMA_Factory微调llama3:8b大模型_llama3模型微调保存-CSDN博客 也可以参考Llama Factory的Readme:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100 LLMsUnify Effi…...

01——生产监控平台——WPF

生产监控平台—— 一、介绍 VS2022 .net core(net6版本) 1、文件夹:MVVM /静态资源(图片、字体等) 、用户空间、资源字典等。 2、图片资源库: https://www.iconfont.cn/ ; 1.资源字典Dictionary 1、…...

33、matlab矩阵分解汇总:LU矩阵分解、Cholesky分解和QR分解

1、LU矩阵分解 语法 语法1:[L,U] lu(A) 将满矩阵或稀疏矩阵 A 分解为一个上三角矩阵 U 和一个经过置换的下三角矩阵 L,使得 A L*U。 语法2:[L,U,P] lu(A) 还返回一个置换矩阵 P,并满足 A P*L*U。 语法3:[L,U,P] …...

C语言——使用函数创建动态内存

一、堆和栈的区别 1)栈(Stack): 栈是一种自动分配和释放内存的数据结构,存储函数的参数值、局部变量的值等。栈的特点是后进先出,即最后进入的数据最先出来,类似于我们堆盘子一样。栈的大小和生命周期是由系统自动管理的,不需要程序员手动释放。2)堆(Heap): 堆是由…...

【PL理论】(16) 形式化语义:语义树 | <Φ, S> ⇒ M | 形式化语义 | 为什么需要形式化语义 | 事实:部分编程语言的设计者并不会形式化语义

💭 写在前面:本章我们将继续探讨形式化语义,讲解语义树,然后我们将讨论“为什么需要形式化语义”,以及讲述一个比较有趣的事实(大部分编程语言设计者其实并不会形式化语义的定义)。 目录 0x00…...

前端杂谈-警惕仅引入一行代码言论

插入一行 JavaScript 代码似乎是一种无受害者犯罪。这只是一个小脚本,对吧?但 JavaScript 可以导入更多 JavaScript。-杰里米基思 “这只是一行代码”是我们经常听到的宣传语。这也可能是我们对自己和他人说的最大的谎言。 “仅用一行添加样式”&#x…...

有关cookie配置的一点记录

Domain:可以用在什么域名下,按最小化原则设Path:可以用在什么路径下,按最小化原则Max-Age和Expires:过期时间,只保留必要时间Http-Only:设置为true,这个浏览器上的JS代码将无法使用这…...

Oracle如何定位硬解析高的语句?

查询subpool 情况 select KSMDSIDX supool,round(sum(KSMSSLEN)/1024/1024,2) SQLA_size_mb from x$ksmss where KSMDSIDX<>0 and KSMSSNAMSQLA group by KSMDSIDX;查询subpool top5 SELECT *FROM (SELECT KSMDSIDX subpool,KSMSSNAM name,ROUND(KSMSSLEN / 102…...

Linux卸载残留MySQL【带图文命令巨详细】

Linux卸载残留MySQL 1、检查残留mysql2、检查并删除残留mysql依赖3、检查是否自带mariadb库 1、检查残留mysql 如果残留mysql组件&#xff0c;使用命令 rpm -e --nodeps 残留组件名 按顺序进行移除操作 #检查系统是否残留过mysql rpm -qa | grep mysql2、检查并删除残留mysql…...

4句话学习-k8s节点是如何注册到k8s集群并且kubelet拿到k8s证书的

一、kubelet拿着CSR&#xff08;签名请求&#xff09;使用的是Bootstrap token 二、ControllerManager有一个组件叫CSRAppprovingController&#xff0c;专门来Watch有没有人来使用我这个api. 三、看到有人拿着Bootstrap token的CSR来签名请求了&#xff0c;CSRAppprovingContr…...

2024全国大学生数学建模竞赛优秀参考资料分享

0、竞赛资料 优秀的资料必不可少&#xff0c;优秀论文是学习的关键&#xff0c;视频学习也非常重要&#xff0c;如有需要请点击下方名片获取。 一、赛事介绍 全国大学生数学建模竞赛(以下简称竞赛)是中国工业与应用数学学会主办的面向全国大学生的群众性科技活动&#xff0c;旨…...

QPS,平均时延和并发数

我们当前有两个服务A和B&#xff0c;想要知道哪个服务的性能更好&#xff0c;该用什么指标来衡量呢&#xff1f; 1. 单次请求时延 一种最简单的方法就是使用同一请求体同时请求两个服务&#xff0c;性能越好的服务时延越短&#xff0c;即 R T 返回结果的时刻 − 发送请求的…...

【Python核心数据结构探秘】:元组与字典的完美协奏曲

文章目录 &#x1f680;一、元组⭐1. 元组查询的相关方法❤️2. 坑点&#x1f3ac;3. 修改元组 &#x1f308;二、集合⭐1. 集合踩坑❤️2. 集合特点&#x1f4a5;无序性&#x1f4a5;唯一性 ☔3. 集合&#xff08;交&#xff0c;并&#xff0c;补&#xff09;&#x1f3ac;4. …...

Golang | Leetcode Golang题解之第137题只出现一次的数字II

题目&#xff1a; 题解&#xff1a; func singleNumber(nums []int) int {a, b : 0, 0for _, num : range nums {b (b ^ num) &^ aa (a ^ num) &^ b}return b }...

Spring和SpringBoot的特点

1.Spring的特点 1.IOC和AOP是Spring的两大核心特性&#xff0c;即控制反转和依赖注入。 2.松耦合&#xff1a;IOC和AOP两大特性可以尽可能地将对象之间的关系解耦 3.可配置&#xff1a;提供外部化配置的方式&#xff0c;可以灵活地配置容器及容器中的Bean 4.一站式&#xff1a…...

怎么使用join将数组转为逗号分隔的字符串

在JavaScript中&#xff0c;你可以使用Array.prototype.join()方法将一个数组转换为逗号分隔的字符串。join()方法接受一个可选的参数&#xff0c;该参数指定了数组元素之间的分隔符。如果不提供参数&#xff0c;则默认使用逗号&#xff08;,&#xff09;作为分隔符。 下面是一…...

Web前端博客论坛:构建、运营与用户体验的深度解析

Web前端博客论坛&#xff1a;构建、运营与用户体验的深度解析 在数字化浪潮的推动下&#xff0c;Web前端博客论坛成为了广大开发者交流技术、分享经验的重要平台。如何构建一个功能齐全、运营有序的博客论坛&#xff0c;以及如何提升用户体验&#xff0c;是摆在每一位前端开发…...

Java从入门到放弃

线程池的主要作用 线程池的设计主要是为了管理线程&#xff0c;为了让用户不需要再关系线程的创建和销毁&#xff0c;只需要使用线程池中的线程即可。 同时线程池的出现也为性能的提升做出了很多贡献&#xff1a; 降低了资源的消耗&#xff1a;不会频繁的创建、销毁线程&…...

基于51单片机的车辆动态称重系统设计

一 动态称重 所谓动态称重是指通过分析和测量车胎运动中的力,来计算该运动车辆的总重量、轴重、轮重和部分重量数据的过程。动态称重系统按经过车辆行驶的速度划分,可分为低速动态称重系统与高速动态称重系统。因为我国高速公路的限速最高是120,所以高速动态称重系统在理论…...

C语言之常用字符串函数总结、使用和模拟实现

文章目录 目录 一、strlen 的使用和模拟实现 二、strcpy 的使用及模拟实现 三、strcat 的使用和模拟实现 四、strcmp 的使用和模拟实现 五、strncpy 的使用和模拟实现 六、strncat 的使用和模拟实现 七、strncmp 的使用和模拟实现 八、strstr 的使用和模拟实现 九、st…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...