日常实习-小米计算机视觉算法岗面经
文章目录
- 流程
- 问题
- 请你写出项目中用到的模型代码,Resnet50
- (1)网络退化现象:把网络加深之后,效果反而变差了
- (2)过拟合现象:训练集表现很棒,测试集很差
- 把你做的工作里面的模型替换成ViT能行吗?
- 有了解过Stable difussion,transformer吗?
- 总结
流程
- 自我介绍
- 介绍项目
- 介绍论文
- 写代码
问题
请你写出项目中用到的模型代码,Resnet50
面试官:写出一个单元就好了。
实际面试过程中写出伪代码就好,
源代码:vision/torchvision/models/resnet.py
class BasicBlock(nn.Module):expansion: int = 1def __init__(self,inplanes: int,planes: int,stride: int = 1,downsample: Optional[nn.Module] = None,groups: int = 1,base_width: int = 64,dilation: int = 1,norm_layer: Optional[Callable[..., nn.Module]] = None,) -> None:super().__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dif groups != 1 or base_width != 64:raise ValueError("BasicBlock only supports groups=1 and base_width=64")if dilation > 1:raise NotImplementedError("Dilation > 1 not supported in BasicBlock")# Both self.conv1 and self.downsample layers downsample the input when stride != 1self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out
里面的精华部分如下,我跳着写:
def __init__():self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace = True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x: Tensor) -> Tensor:identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return out
在面试官的提示下我写了大概这样的伪代码:
def forward(x):identity = xout = conv2d(x)out = batchnorm(out)out = relu(out)out = conv2d(x)out = batchnorm(out)out += identityout = relu(out)return out
面试结果还没出,不保证我这样写是正确的!
进一步了解Resnet50,来自B站的同济子豪兄【精读AI论文】ResNet深度残差网络
- 有几种不好的现象:
(1)网络退化现象:把网络加深之后,效果反而变差了
用人话说明:一个孩子报名了课外辅导班,结果不仅作业写得更差了,考试也更差了;(学多了反而导致结果更糟糕)
(2)过拟合现象:训练集表现很棒,测试集很差
用人话说明:一个孩子作业做的很棒,一上考场就发挥失常;
把你做的工作里面的模型替换成ViT能行吗?
有了解过Stable difussion,transformer吗?
有一点点
【渣渣讲课】试图做一个正常讲解Latent / Stable Diffusion的成年人
总结
一面会重点针对简历上写的论文和项目,以及考察一些和岗位相关的前沿知识,坐在实验室是绝对绝对感受不到这些的!要勇敢踏出第一步;
间隔2天,官网显示流程终止 ╥﹏╥…
相关文章:
日常实习-小米计算机视觉算法岗面经
文章目录 流程问题请你写出项目中用到的模型代码,Resnet50(1)网络退化现象:把网络加深之后,效果反而变差了(2)过拟合现象:训练集表现很棒,测试集很差 把你做的工作里面的…...
(C++)string模拟实现
string底层是一个是字符数组 为了跟库里的string区别,所以定义一个命名空间将类string包含 一、构造 1.构造函数 注意:将char*传给const char*是范围缩小,因此只能1:1构造一个 strlen遇到nullptr解引用会报错,因此…...
类和对象的学习总结(一)
面向对象和面向过程编程初步认识 C语言是面向过程的,关注过程(分析求解问题的步骤) 例如:外卖,关注点菜,接单,送单等 C是面向对象的,关注对象,把一件事拆分成不同的对象&…...
力扣22. 括号生成
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。 示例 1:输入:n 3 输出:["((()))","(()())","(())()","()(())","()()(…...
检测窗口是否最大化兼容 Win10/11
检测窗口是否最大化(窗口覆盖或独占全屏)兼容 Win10/11 问题描述 在 Win10/11 上有很多 UWP 进程,检测窗口是否最大化将迎来新的挑战。这些窗口以其不能够使用 Win32 的 IsWindowVisible 获取窗口可见性为特征。此时,必须使用 D…...
【qsort函数】
前言 我们要学习qsort函数并利用冒泡函数仿照qsort函数 首先我们要了解一下qsort(快速排序) 这是函数的的基本参数 void qsort (void* base, size_t num, size_t size,int (*compar)(const void*,const void*)); 简单解释一下 base:指向…...
python类元编程示例-使用类型注解来检查转换属性值的类框架
用三种方式实现使用类型注解来检查转换属性值的类框架 1 __init_subclass__方式 1.1 代码实现 from collections.abc import Callable # <1> from typing import Any, NoReturn, get_type_hints from typing import Dict, Typeclass Field:def __init__(self, name: …...
Python3 笔记:字符串的 zfill() 和 rjust()
1、zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0。 语法:str.zfill(width) width :指定字符串的长度。原字符串右对齐,前面填充0。 str1 2546 str2 2 print(str1.zfill(10)) # 运行结果࿱…...
SpringBoot项目启动提示端口号占用
Windows环境下,SpringBoot项目启动时报端口号占用: *************************** APPLICATION FAILED TO START ***************************Description:Web server failed to start. Port 8080 was already in use.Action:Identify and stop the proc…...
音视频开发23 FFmpeg 音频重采样
代码实现的功能 目的是 将: 一个采样率为 44100,采样通道为 2,格式为 AV_SAMPLE_FMT_DBL 的 in.pcm 数据 转换成 一个采样率为 48000,采样通道为 1,格式为 AV_SAMPLE_FMT_S16 的 out.pcm 数据 1.重采样 1.1 为什么要重…...
windows系统下安装fnm
由于最近做项目要切换多个node版本,查询了一下常用的有nvm和fnm这两种,对比了一下选择了fnm。 下载fnm 有两种方式,目前最新版本是1.37.0: 1.windows下打开powershell,执行以下命令下载fnm winget install Schniz.f…...
【Linux网络】传输层协议 - UDP
文章目录 一、传输层(运输层)运输层的特点复用和分用再谈端口号端口号范围划分认识知名端口号(Well-Know Port Number)两个问题① 一个进程是否可以绑定多个端口号?② 一个端口号是否可以被多个进程绑定? n…...
debugger(四):源代码
〇、前言 终于来到令人激动的源代码 level 了,这里将会有一些很有意思的算法,来实现源代码级别的调试,这将会非常有趣。 一、使用 libelfin 库 我们不可能直接去读取整个 .debug info 段来进行设置,这是没有必要的,…...
基于运动控制卡的圆柱坐标机械臂设计
1 方案简介 介绍一种基于运动控制卡制作一款scara圆柱坐标的机械臂设计方案,该方案控制器用运动控制卡制作一台三轴机械臂,用于自动抓取和放料操作。 2 组成部分 该机械臂的组成部分有研华运动控制卡,触摸屏,三轴圆柱坐标的平面运…...
MongoDBTemplate-基本文档查询
文章目录 流程概述步骤1:创建一个MongoDB的连接步骤2:创建一个查询对象Query步骤3:设置需要查询的字段步骤4:使用查询对象执行查询操作 流程概述 步骤描述步骤1创建一个MongoDB的连接步骤2创建一个查询对象Query步骤3设置需要查询…...
23种设计模式——创建型模式
设计模式 文章目录 设计模式创建型模式单例模式 [1-小明的购物车](https://kamacoder.com/problempage.php?pid1074)工厂模式 [2-积木工厂](https://kamacoder.com/problempage.php?pid1076)抽象⼯⼚模式 [3-家具工厂](https://kamacoder.com/problempage.php?pid1077)建造者…...
idm究竟有哪些优势
IDM(Internet Download Manager)是一款广受好评的下载管理工具,其主要优势包括: 高速下载:IDM支持最大32线程的下载,可以显著提升下载速度1。文件分类下载:IDM可以根据文件后缀进行分类&#x…...
如何学习Golang语言!
第一部分:Go语言概述 起源与设计哲学:Go语言由Robert Griesemer、Rob Pike和Ken Thompson三位Google工程师设计,旨在解决现代编程中的一些常见问题,如编译速度、运行效率和并发编程。主要特点:Go语言的语法简单、编译…...
Redis系列之淘汰策略介绍
Redis系列之淘汰策略介绍 文章目录 为什么需要Redis淘汰策略?Redis淘汰策略分类Redis数据淘汰流程源码验证淘汰流程Redis中的LRU算法Redis中的LFU算法 为什么需要Redis淘汰策略? 由于Redis内存是有大小的,当内存快满的时候,又没有…...
sql 调优
sql 调优 SQL调优是一个复杂的过程,涉及多个方面,包括查询优化、索引优化、表结构优化等。以下是一些基本的SQL调优策略: 使用索引:确保查询中涉及的列都有适当的索引。 查询优化:避免使用SELECT *,只选取…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
