37、matlab矩阵运算
1、前言
矩阵运算是指对矩阵的各种操作和运算,包括矩阵加法、矩阵减法、矩阵乘法、矩阵转置、求逆矩阵等。以下是常见的矩阵运算:
-
矩阵加法:对应位置的元素相加,要求加数和被加数的维度相同。
A + B = | a11 b11 | + | a12 b12 | | a21 b21 | | a22 b22 |
-
矩阵减法:对应位置的元素相减,要求减数和被减数的维度相同。
A - B = | a11 b11 | - | a12 b12 | | a21 b21 | | a22 b22 |
-
矩阵乘法:按照行乘列的方式计算,要求左矩阵的列数等于右矩阵的行数。
AB = A的行 * B的列
-
矩阵转置:将矩阵的行与列进行交换,即将A的第i行第j列元素变为转置矩阵A^T的第j行第i列元素。
对于矩阵A,A^T表示其转置矩阵。
-
矩阵求逆:对于方阵,如果其行列式不为0,则可以求其逆矩阵A^-1。
如果A是一个可逆矩阵,那么AA^-1 = A^-1A = I,其中I是单位矩阵。
矩阵运算在线性代数、数值分析、工程计算等领域有广泛的应用。例如,在解线性方程组、特征值问题、最小二乘拟合、图像处理等方面都需要用到矩阵运算。熟练掌握矩阵运算的规则和性质对于理解和应用数学模型非常重要。
2、transpose, .' 转置向量或矩阵
语法
B = A.' 返回 A 的非共轭转置,即每个元素的行和列索引都会互换。
B = transpose(A) 是执行 A.' 的另一种方式,它可以为类启用运算符重载。
1)实矩阵转置
代码及运算
A = magic(5)
B = A.'A =17 24 1 8 1523 5 7 14 164 6 13 20 2210 12 19 21 311 18 25 2 9B =17 23 4 10 1124 5 6 12 181 7 13 19 258 14 20 21 215 16 22 3 9
2)复矩阵转置
代码及运算
A = [1 3 4-1i 2+2i; 0+1i 1-1i 5 6-1i]
B = A.'A =1.0000 + 0.0000i 3.0000 + 0.0000i 4.0000 - 1.0000i 2.0000 + 2.0000i0.0000 + 1.0000i 1.0000 - 1.0000i 5.0000 + 0.0000i 6.0000 - 1.0000iB =1.0000 + 0.0000i 0.0000 + 1.0000i3.0000 + 0.0000i 1.0000 - 1.0000i4.0000 - 1.0000i 5.0000 + 0.0000i2.0000 + 2.0000i 6.0000 - 1.0000i
3、 ctranspose, ' 复共轭转置
语法
B = A' 计算 A 的复共轭转置。
B = ctranspose(A) 是执行 A' 的替代方法
1)实矩阵的共轭转置
代码及运算
A = [2 1; 9 7; 2 8; 3 5]
B = A'A =2 19 72 83 5B =2 9 2 31 7 8 5
2) 复矩阵的共轭转置
代码及运算
A = [0-1i 2+1i;4+2i 0-2i]
B = A'A =0.0000 - 1.0000i 2.0000 + 1.0000i4.0000 + 2.0000i 0.0000 - 2.0000iB =0.0000 + 1.0000i 4.0000 - 2.0000i2.0000 - 1.0000i 0.0000 + 2.0000i
4、 mtimes, * 矩阵乘法
语法
C = A*B 是 A 和 B 的矩阵乘积。
C = mtimes(A,B) 是执行 A*B 这一操作的替代方法
1)将两个向量相乘
代码及运算
A = [1 1 0 0];
B = [1; 2; 3; 4];
C1 = A*B
C2 = B*AC1 =3C2 =1 1 0 02 2 0 03 3 0 04 4 0 0
2)将两个数组相乘
代码及运算
A = [1 3 5; 2 4 7];
B = [-5 8 11; 3 9 21; 4 0 8];
C = A*BC =24 35 11430 52 162
5、 mpower, ^ 矩阵幂
语法
C = A^B 计算 A 的 B 次幂并将结果返回给 C。
C = mpower(A,B) 是执行 A^B 的替代方法,但很少使用。
1)方阵幂运算
代码及运算
A = [1 2; 3 4];
C = A^2C =7 1015 22
2)矩阵指数
代码及运算
B = [0 1; 1 0];
C = 2^BC =1.2500 0.75000.7500 1.2500
6、 sqrtm 矩阵平方根
语法
X = sqrtm(A) 返回矩阵 A 的主要平方根(即 X*X = A)。
[X,residual] = sqrtm(A) 还会返回残差 residual = norm(A-X^2,1)/norm(A,1)
[X,alpha,condx] = sqrtm(A) 以 1-范数形式返回稳定因子 alpha 和 X 的矩阵平方根条件数的估计值,即 condx。
1)差分算子的矩阵平方根
代码及运算
A = [5 -4 1 0 0; -4 6 -4 1 0; 1 -4 6 -4 1; 0 1 -4 6 -4; 0 0 1 -4 6]
X = sqrtm(A)A =5 -4 1 0 0-4 6 -4 1 01 -4 6 -4 10 1 -4 6 -40 0 1 -4 6X =2.0015 -0.9971 0.0042 0.0046 0.0032-0.9971 2.0062 -0.9904 0.0118 0.00940.0042 -0.9904 2.0171 -0.9746 0.02630.0046 0.0118 -0.9746 2.0503 -0.92000.0032 0.0094 0.0263 -0.9200 2.2700
2)具有多个平方根的矩阵
代码及运算
A = [7 10; 15 22];
Y1 = [1.5667 1.7408; 2.6112 4.1779];
A - Y1*Y1
Y2 = [1 2; 3 4];
A - Y2*Y2
Y = sqrtm(A)ans =1.0e-03 *-0.1258 -0.1997-0.2995 -0.4254ans =0 00 0Y =1.5667 1.74082.6112 4.1779
7、expm 矩阵指数
语法
Y = expm(X) 计算 X 的矩阵指数。
1)指数运算
代码及运算
A = [1 1 0; 0 0 2; 0 0 -1];
expm(A)ans =2.7183 1.7183 1.08620 1.0000 1.26420 0 0.3679
8、 logm 矩阵对数
语法
L = logm(A) 是 A 的主矩阵对数,即 expm(A) 的倒数。
1)矩阵对数
代码及运算
A = [1 1 0; 0 0 2; 0 0 -1];
P = logm(Y)P =-0.3504 0.92941.3940 1.0436
9、cross 叉积
语法
C = cross(A,B) 返回 A 和 B 的叉积。
C = cross(A,B,dim) 计算数组 A 和 B 沿维度 dim 的叉积。
1)向量的叉积
代码及运算
A = [4 -2 1];
B = [1 -1 3];
C = cross(A,B)C =-5 -11 -2
2)矩阵的叉积
代码及运算
A = randi(15,3,5)
B = randi(25,3,5)
C = cross(A,B)A =13 15 6 3 1011 1 12 8 115 7 12 7 12B =7 5 24 6 1317 3 9 19 1817 13 15 7 23C =102 -8 72 -77 37-186 -160 198 21 -74144 40 -234 9 37
10、 dot 点积
语法
C = dot(A,B) 返回 A 和 B 的标量点积。
C = dot(A,B,dim) 计算 A 和 B 沿维度 dim 的点积。
1)实数向量的点积
代码及运算
A = [4 -1 2];
B = [2 -2 -1];
C = dot(A,B)C =8
2)复数向量的点积
代码及运算
A = [1+i 1-i -1+i -1-i];
B = [3-4i 6-2i 1+2i 4+3i];
C = dot(A,B)
D = dot(A,A)C =1.0000 - 5.0000iD =8
3)矩阵的点积
代码及运算
A = [1 2 3;4 5 6;7 8 9];
B = [9 8 7;6 5 4;3 2 1];
C = dot(A,B)C =54 57 54
4)多维数组的点积
代码及运算
A = cat(3,[1 1;1 1],[2 3;4 5],[6 7;8 9])
B= cat(3,[2 2;2 2],[10 11;12 13],[14 15; 16 17])
C = dot(A,B,3)A(:,:,1) =1 11 1A(:,:,2) =2 34 5A(:,:,3) =6 78 9B(:,:,1) =2 22 2B(:,:,2) =10 1112 13B(:,:,3) =14 1516 17C =106 140178 220
相关文章:
37、matlab矩阵运算
1、前言 矩阵运算是指对矩阵的各种操作和运算,包括矩阵加法、矩阵减法、矩阵乘法、矩阵转置、求逆矩阵等。以下是常见的矩阵运算: 矩阵加法:对应位置的元素相加,要求加数和被加数的维度相同。 A B | a11 b11 | | a12 b12 | | …...
用软件实现的硬件——虚拟机
通过软件实现CPU和内存等硬件所具有的功能,并在计算机中运行循环的计算机技术称为虚拟机。使用虚拟机,就可以在一台计算机中运行多个循环出来的计算机。 近几年的计算机,除了硬件具有较高的性能外,CPU的性能也有了提升。因此&…...
[Shell编程学习路线]--shell中重定向和管道符(详细介绍)
🏡作者主页:点击! 🛠️Shell编程专栏:点击! ⏰️创作时间:2024年6月12日10点50分 🀄️文章质量:93分 ——前言—— 在Shell编程中,重定向和管道符是两个…...
Linux命令详解(1)
在Linux操作系统中,命令行界面(CLI)是一个强大的工具,它允许用户通过键入命令来与系统交互。无论是系统管理员还是普通用户,掌握一些基本的Linux命令都是非常重要的。在本文中,我们将探讨一些常用的Linux命…...
网工内推 | 深信服、中软国际技术支持工程师,最高13k*13薪
01 深信服 🔷招聘岗位:远程技术支持工程师 🔷任职要求: 一、专业能力和行业经验: ①具备友商同岗位工作经验1.5年以上,具备良好的分析和判断能力,有独立问题处理思路,具备常见协…...
实现卡片的展开缩放动画
原理,外层包裹一个元素,子元素分别是展开和收起的元素,然后对展开的元素添加动画,动画内容是随时间变化,将卡片的transform:rotateX属性进行调整,因为改变的是子元素的旋转,父元素高…...
实验:贪心算法
实验二:贪心算法 【实验目的】 应用贪心算法求解活动安排问题。 【实验性质】 验证性实验。 【实验要求】 活动安排问题是可以用贪心算法有效求解的很好的例子。 问题:有n个活动的集合A{1,2,…,n},其中每个活动都要求使用同一资源&…...
Python学习笔记12 -- 有关布尔值的详细说明
一、布尔表达式 最终值为true 或者false 二、常见形式: 1、常量:true false 2、比较运算: and ! 3、复合运算: and and or 4、其他 例:检测闰年: def specialYearMine(year):if (year%4 …...
SQL-窗口函数合集
目录 1.窗口函数简介2.窗口的定义3.相关题目示例3.1 PERCENT_RANK()2346 以百分比计算排名 3.2 FIRST_VALUE()/LAST_VALUE()/NTH_VALUE()2388 将表中的空值更改为前一个值 1.窗口函数简介 MySQL 开窗函数(Window Functions)是 MySQL 8.0 版本引入的一个…...
2024 全球软件研发技术大会官宣,50+专家共话软件智能新范式!
2024年的全球软件研发技术大会(SDCon)由CSDN和高端IT咨询与教育平台Boolan联合主办,将于7月4日至5日在北京威斯汀酒店举行。本次大会的主题为“大模型驱动软件智能化新范式”,旨在探讨大模型和开源技术的发展如何引领全球软件研发…...
opencv快速安装以及各种查看版本命令
安装opencv并查看其版本,直接通过一个可执行文件实现。 #!/bin/bashwget https://codeload.github.com/opencv/opencv/zip/3.4 -O opencv-3.4.zip && unzip opencv-3.4.zip && cd opencv-3.4 && \mkdir build && cd build &&a…...
免费学习通刷课(免费高分)Pro版
文章目录 概要整体架构流程小结 概要 关于上一版的免费高分的学习通刷课,有很多人觉得还得登录太复杂了,然后我又发现了个神脚本,操作简单,可以后台挂着,但是还是建议调整速度到2倍速,然后找到你该刷的课&…...
线性数据结构-队列
队列(Queue)是一种先进先出(First In First Out, FIFO)的数据结构,它按照元素进入的顺序来处理元素。队列的基本操作包括: enqueue:在队列的末尾添加一个元素。dequeue:移除队列的第…...
python脚本将视频抽帧为图像数据集
AI应用开发相关目录 本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…...
Xmind导入纯文本TXT方法
最近有很多同事咨询我如何在xmind直接导入纯文本txt笔记或者思维导图呢? 解决办法如下: 1.先打开xmind随便打开一个思维导图-文件-导出-marldown 2.选中导出的markdown文件。右键-打开方式-苹果系统选择文本编辑,Win系统选择记事本 3.按照图示…...
深度学习在老年痴呆检测中的应用:数据集综述
深度学习在老年痴呆检测中的应用:数据集综述 引言 老年痴呆(Alzheimer’s Disease, AD)是一种神经退行性疾病,主要影响老年人,导致记忆力、认知能力和行为的逐步衰退。早期检测和诊断对于延缓疾病进展、提高患者生活质量至关重要。近年来,深度学习技术在医学影像分析和…...
【FreeRTOS】内存管理笔记
一、为什么要自己实现内存管理? 后续的章节涉及这些内核对象:task、queue、semaphores和event group等。为了让FreeRTOS更容 易使用,这些内核对象一般都是动态分配:用到时分配,不使用时释放。使用内存的动态管理功能&…...
【数据结构】二叉树:一场关于节点与遍历的艺术之旅
专栏引入 哈喽大家好,我是野生的编程萌新,首先感谢大家的观看。数据结构的学习者大多有这样的想法:数据结构很重要,一定要学好,但数据结构比较抽象,有些算法理解起来很困难,学的很累。我想让大家…...
arm系统中双网卡共存问题
文章目录 单网卡单独运行双网卡共存问题双网卡解决方案方案一方案二方案三验证双网卡通过网卡名获取IP通过TCP与服务端通信参考单网卡单独运行 双网卡共存问题 双网卡解决方案 方案一 https://blog.csdn.net/HowieXue/article/details/75937972 方案二 http://bbs.witech…...
IDEA创建Mybatis项目
IDEA创建Mybatis项目 第一步:创建库表 -- 创建数据库 create database mybatis_db;-- 使用数据库 use mybatis_db;-- 创建user表 CREATE TABLE user (id INT AUTO_INCREMENT PRIMARY KEY,username VARCHAR(50) NOT NULL,password VARCHAR(50) NOT NULL,email VARC…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
