【数据结构】双向链表(C语言)
哈喽铁子们,这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识,下面正式开始。
1. 双向链表的结构

2. 双向链表的实现

以尾插为例:
第一步:assert(phead); 防止为空。
第二步:创建新节点,和单链表一样用LTBuyNode()函数即可。
第三步:先将新节点指向原链表,由双向链表的特性,我们就不需要像单链表一样遍历去找。newnode->prev即为上图的d3。
(1) newnode->prev = phead->prev;先将新节点的头部指向原链表的最后一个节点,即d3。
(2) newnode->next = phead;而后将新节点的尾部指向原链表的哨兵位。
第四步:将原链表相应的位置指向新节点
(1)phead->prev->next = newnode;原链表的最后节点尾部指向新节点
(2)phead->prev = newnode;原链表的哨兵位头部指向新节点
//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}
只要理清楚双向链表节点的指向关系,之后和单链表结构相似。
双链表的代码如下:
//List.c
#include"List.h"void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}//申请节点
LTNode* LTBuyNode(LTDataType x)
{LTNode* node = (LTNode*)malloc(sizeof(LTNode));if (node == NULL){perror("malloc fail!");exit(1);}node->data = x;node->next = node->prev = node;return node;
}
//初始化
//void LTInit(LTNode** pphead)
//{
// //给双向链表创建一个哨兵位
// *pphead = LTBuyNode(-1);
//}
LTNode* LTInit()
{LTNode* phead = LTBuyNode(-1);return phead;
}//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}//头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead newnode phead->nextnewnode->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}//尾删
void LTPopBack(LTNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);LTNode* del = phead->prev;//phead del->prev deldel->prev->next = phead;phead->prev = del->prev;//删除del节点free(del);del = NULL;
}//头删
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->next;//phead del del->nextphead->next = del->next;del->next->prev = phead;//删除del节点free(del);del = NULL;
}LTNode* LTFind(LTNode* phead, LTDataType x)
{LTNode* pcur = phead->next;while (pcur != phead){if (pcur->data == x){return pcur;}pcur = pcur->next;}//没有找到return NULL;
}//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);//pos newnode pos->nextnewnode->next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}//删除pos节点
void LTErase(LTNode* pos)
{//pos理论上来说不能为phead,但是没有参数phead,无法增加校验assert(pos);//pos->prev pos pos->nextpos->next->prev = pos->prev;pos->prev->next = pos->next;free(pos);pos = NULL;
}void LTDesTroy(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){LTNode* next = pcur->next;free(pcur);pcur = next;}//此时pcur指向phead,而phead还没有被销毁free(phead);phead = NULL;
}
//List.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>//定义节点的结构
//数据 + 指向下一个节点的指针
typedef int SLTDataType;typedef struct SListNode {SLTDataType data;struct SListNode* next;
}SLTNode;void SLTPrint(SLTNode* phead);//尾插
void SLTPushBack(SLTNode** pphead, SLTDataType x);
//头插
void SLTPushFront(SLTNode** pphead, SLTDataType x);
//尾删
void SLTPopBack(SLTNode** pphead);
//头删
void SLTPopFront(SLTNode** pphead);//查找
SLTNode* SLTFind(SLTNode* phead, SLTDataType x);//在指定位置之前插入数据
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在指定位置之后插入数据
void SLTInsertAfter(SLTNode* pos, SLTDataType x);//删除pos节点
void SLTErase(SLTNode** pphead, SLTNode* pos);
//删除pos之后的节点
void SLTEraseAfter(SLTNode* pos);//销毁链表
void SListDesTroy(SLTNode** pphead);
3. 顺序表和双向链表的优缺点分析
| 不同点 | 顺序表 | 链表(单链表) |
| 存储空间上 | 物理上⼀定连续 | 逻辑上连续,但物理上不⼀定连续 |
| 随机访问 | ⽀持O(1) | 不⽀持:O(N) |
| 任意位置插⼊或者删除元素 | 可能需要搬移元素,效率低O(N) | 只需修改指针指向 |
| 插⼊ | 动态顺序表,空间不够时需要扩容 | 没有容量的概念 |
| 应⽤场景 | 元素⾼效存储+频繁访问 | 任意位置插⼊和删除频繁 |
在接下来我们将会学习利用实现贪吃蛇小游戏等有意思的东西,如果本篇有不理解的地方,欢迎私信我或在评论区指出,期待与你们共同进步。创作不易,望各位大佬一键三连!
相关文章:
【数据结构】双向链表(C语言)
哈喽铁子们,这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识,下面正式开始。 1. 双向链表的结构 注意:这里的“带头”跟前面我们说的“头节点”是两个概念,实际前面的在单链表阶段称呼不严 谨,但是为了老…...
【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例
WGAN与DCGAN在图像生成中的应用实例 WGAN与DCGAN在图像生成中的应用实例:一场深度学习的视觉盛宴DCGAN简介WGAN简介应用实例:基于DCGAN的图像生成应用实例:WGAN的图像生成实践结语 WGAN与DCGAN在图像生成中的应用实例:一场深度学习…...
垫付商贩任务补单平台补单系统网站源码提供
垫付商贩任务补单平台补单系统网站源码提供...
vue富文本wangeditor加@人功能(vue2 vue3都可以)
依赖 "wangeditor/editor": "^5.1.23", "wangeditor/editor-for-vue": "^5.1.12", "wangeditor/plugin-mention": "^1.0.0",RichEditor.vue <template><div style"border: 1px solid #ccc; posit…...
######## redis各章节终篇索引(更新中) ############
其他 父子关系(ctx、协程)#### golang存在的父子关系 ####_子goroutine panic会导致父goroutine挂掉吗-CSDN博客 参数传递(slice、map)#### go中参数传递(涉及:切片slice、map、channel等) ###…...
一个基于MySQL的数据库课程设计的基本框架
数据库课程设计(MySQL)通常涉及多个步骤,以确保数据库的有效设计、实现和维护。以下是一个基于MySQL的数据库课程设计的基本框架,结合参考文章中的相关信息进行整理: ### 一、引言 * **背景**:简要介绍为…...
架构设计基本原则
开闭原则 开闭原则(Open Closed Principle,OCP)是面向对象编程(OOP)中的一个核心原则,主要强调的是软件实体(类、模块、函数等)应该对扩展开放,对修改封闭。 解释&…...
云原生应用开发培训,开启云计算时代的新征程
在云计算时代,云原生应用开发技术已经成为IT领域的热门话题。如果您想要转型至云原生领域,我们的云原生应用开发培训将帮助您开启新征程。 我们的课程内容涵盖了云原生技术的基础概念、容器技术、微服务架构、持续集成与持续发布(CI/CD&#…...
【数据库设计】宠物商店管理系统
目录 🌊1 问题的提出 🌊2 需求分析 🌍2.1 系统目的 🌍2.2 用户需求 🌻2.2.1 我国宠物行业作为新兴市场,潜力巨大 🌻2.2.2 我国宠物产品消费规模逐年增大 🌻2.2.3 我国宠物主选…...
前端 JS 经典:node 的模块查找策略
前言:我们引入模块后,node 大概的查找步骤分为 文件查找、文件夹查找、内置模块查找、第三方模块查找,在 node 中使用 ESM 模块语法,需要创建 package.json 文件,并将 type 设置为 module。简单起见,我们用…...
C++中的23种设计模式
目录 摘要 创建型模式 1. 工厂方法模式(Factory Method Pattern) 2. 抽象工厂模式(Abstract Factory Pattern) 3. 单例模式(Singleton Pattern) 4. 生成器模式(Builder Pattern࿰…...
vue.js+node.js+mysql在线聊天室源码
vue.jsnode.jsmysql在线聊天室源码 技术栈:vue.jsElement UInode.jssocket.iomysql vue.jsnode.jsmysql在线聊天室源码...
浏览器无痕模式和非无痕模式的区别
无痕模式 1. 历史记录:在无痕模式下,浏览器不会保存浏览记录、下载记录、表单数据和Cookies。当你关闭无痕窗口后,这些信息都会被删除。 2. Cookies:无痕模式会在会话期间临时存储Cookies,但在关闭无痕窗口…...
WPF框架,修改ComboBox控件背景色 ,为何如此困难?
直接修改Background属性不可行 修改控件背景颜色,很多人第一反应便是修改Background属性,但是修改过后便会发现,控件的颜色没有发生任何变化。 于是在网上搜索答案,便会发现一个异常尴尬的情况,要么就行代码简单但是并…...
Diffusers代码学习: 文本引导深度图像生成
StableDiffusionDepth2ImgPipeline允许传递文本提示和初始图像,以调节新图像的生成。此外,还可以传递depth_map以保留图像结构。如果没有提供depth_map,则管道通过集成的深度估计模型自动预测深度。 # 以下代码为程序运行进行设置 import o…...
网络的下一次迭代:AVS 将为 Web2 带去 Web3 的信任机制
撰文:Sumanth Neppalli,Polygon Ventures 编译:Yangz,Techub News 本文来源香港Web3媒体:Techub News AVS (主动验证服务)将 Web2 的规模与 Web3 的信任机制相融合,开启了网络的下…...
OpenCV 的模板匹配
OpenCV中的模板匹配 模板匹配(Template Matching)是计算机视觉中的一种技术,用于在大图像中找到与小图像(模板)相匹配的部分。OpenCV提供了多种模板匹配的方法,主要包括基于相关性和基于平方差的匹配方法。…...
26.0 Http协议
1. http协议简介 HTTP(Hypertext Transfer Protocol, 超文本传输协议): 是万维网(WWW: World Wide Web)中用于在服务器与客户端(通常是本地浏览器)之间传输超文本的协议.作为一个应用层的协议, HTTP以其简洁, 高效的特点, 在分布式超媒体信息系统中扮演着核心角色. 自1990年提…...
IO流打印流
打印流 IO流打印流是Java中用来将数据打印到输出流的工具。打印流提供了方便的方法来格式化和输出数据,可以用于将数据输出到控制台、文件或网络连接。 分类:打印流一般是指:PrintStream,PrintWriter两个类 特点1:打印流只操作文件目的地,…...
Cohere reranker 一致的排序器
这本notebook展示了如何在检索器中使用 Cohere 的重排端点。这是在 ContextualCompressionRetriever 的想法基础上构建的。 %pip install --upgrade --quiet cohere %pip install --upgrade --quiet faiss# OR (depending on Python version)%pip install --upgrade --quiet…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
Linux操作系统共享Windows操作系统的文件
目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项,设置文件夹共享为总是启用,点击添加,可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download(这是我共享的文件夹)&…...
第14节 Node.js 全局对象
JavaScript 中有一个特殊的对象,称为全局对象(Global Object),它及其所有属性都可以在程序的任何地方访问,即全局变量。 在浏览器 JavaScript 中,通常 window 是全局对象, 而 Node.js 中的全局…...
简单聊下阿里云DNS劫持事件
阿里云域名被DNS劫持事件 事件总结 根据ICANN规则,域名注册商(Verisign)认定aliyuncs.com域名下的部分网站被用于非法活动(如传播恶意软件);顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...
