当前位置: 首页 > news >正文

【数据结构】双向链表(C语言)

哈喽铁子们,这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识,下面正式开始。

1. 双向链表的结构

注意:这里的“带头”跟前面我们说的“头节点”是两个概念,实际前面的在单链表阶段称呼不严
谨,但是为了老铁们更好的理解就直接称为单链表的头节点。
带头链表里的头节点,实际为“哨兵位”,哨兵位节点不存储任何有效元素,只是站在这⾥“放哨
的”。而“哨兵位”存在的意义: 遍历循环链表避免死循环。

2. 双向链表的实现

以尾插为例:

第一步:assert(phead); 防止为空。

第二步:创建新节点,和单链表一样用LTBuyNode()函数即可。

第三步:先将新节点指向原链表,由双向链表的特性,我们就不需要像单链表一样遍历去找。newnode->prev即为上图的d3。

       (1) newnode->prev = phead->prev;先将新节点的头部指向原链表的最后一个节点,即d3。

       (2) newnode->next = phead;而后将新节点的尾部指向原链表的哨兵位。

第四步:将原链表相应的位置指向新节点

       (1)phead->prev->next = newnode;原链表的最后节点尾部指向新节点

       (2)phead->prev = newnode;原链表的哨兵位头部指向新节点

//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}

只要理清楚双向链表节点的指向关系,之后和单链表结构相似。

双链表的代码如下: 

//List.c
#include"List.h"void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}//申请节点
LTNode* LTBuyNode(LTDataType x)
{LTNode* node = (LTNode*)malloc(sizeof(LTNode));if (node == NULL){perror("malloc fail!");exit(1);}node->data = x;node->next = node->prev = node;return node;
}
//初始化
//void LTInit(LTNode** pphead)
//{
//	//给双向链表创建一个哨兵位
//	*pphead = LTBuyNode(-1);
//}
LTNode* LTInit()
{LTNode* phead = LTBuyNode(-1);return phead;
}//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead phead->prev newnodenewnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;
}//头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead newnode phead->nextnewnode->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}//尾删
void LTPopBack(LTNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);LTNode* del = phead->prev;//phead del->prev deldel->prev->next = phead;phead->prev = del->prev;//删除del节点free(del);del = NULL;
}//头删
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->next;//phead del del->nextphead->next = del->next;del->next->prev = phead;//删除del节点free(del);del = NULL;
}LTNode* LTFind(LTNode* phead, LTDataType x)
{LTNode* pcur = phead->next;while (pcur != phead){if (pcur->data == x){return pcur;}pcur = pcur->next;}//没有找到return NULL;
}//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);//pos newnode pos->nextnewnode->next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}//删除pos节点
void LTErase(LTNode* pos)
{//pos理论上来说不能为phead,但是没有参数phead,无法增加校验assert(pos);//pos->prev pos pos->nextpos->next->prev = pos->prev;pos->prev->next = pos->next;free(pos);pos = NULL;
}void LTDesTroy(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){LTNode* next = pcur->next;free(pcur);pcur = next;}//此时pcur指向phead,而phead还没有被销毁free(phead);phead = NULL;
}
//List.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>//定义节点的结构
//数据 + 指向下一个节点的指针
typedef int SLTDataType;typedef struct SListNode {SLTDataType data;struct SListNode* next;
}SLTNode;void SLTPrint(SLTNode* phead);//尾插
void SLTPushBack(SLTNode** pphead, SLTDataType x);
//头插
void SLTPushFront(SLTNode** pphead, SLTDataType x);
//尾删
void SLTPopBack(SLTNode** pphead);
//头删
void SLTPopFront(SLTNode** pphead);//查找
SLTNode* SLTFind(SLTNode* phead, SLTDataType x);//在指定位置之前插入数据
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);
//在指定位置之后插入数据
void SLTInsertAfter(SLTNode* pos, SLTDataType x);//删除pos节点
void SLTErase(SLTNode** pphead, SLTNode* pos);
//删除pos之后的节点
void SLTEraseAfter(SLTNode* pos);//销毁链表
void SListDesTroy(SLTNode** pphead);

 3. 顺序表和双向链表的优缺点分析

不同点
顺序表
链表(单链表)
存储空间上
物理上⼀定连续
逻辑上连续,但物理上不⼀定连续
随机访问
⽀持O(1)
不⽀持:O(N)
任意位置插⼊或者删除元素
可能需要搬移元素,效率低O(N)
只需修改指针指向
插⼊
动态顺序表,空间不够时需要扩容
没有容量的概念
应⽤场景
元素⾼效存储+频繁访问
任意位置插⼊和删除频繁

在接下来我们将会学习利用实现贪吃蛇小游戏等有意思的东西,如果本篇有不理解的地方,欢迎私信我或在评论区指出,期待与你们共同进步。创作不易,望各位大佬一键三连!

相关文章:

【数据结构】双向链表(C语言)

哈喽铁子们&#xff0c;这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识&#xff0c;下面正式开始。 1. 双向链表的结构 注意&#xff1a;这里的“带头”跟前面我们说的“头节点”是两个概念&#xff0c;实际前面的在单链表阶段称呼不严 谨&#xff0c;但是为了老…...

【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例

WGAN与DCGAN在图像生成中的应用实例 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习的视觉盛宴DCGAN简介WGAN简介应用实例&#xff1a;基于DCGAN的图像生成应用实例&#xff1a;WGAN的图像生成实践结语 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习…...

垫付商贩任务补单平台补单系统网站源码提供

垫付商贩任务补单平台补单系统网站源码提供...

vue富文本wangeditor加@人功能(vue2 vue3都可以)

依赖 "wangeditor/editor": "^5.1.23", "wangeditor/editor-for-vue": "^5.1.12", "wangeditor/plugin-mention": "^1.0.0",RichEditor.vue <template><div style"border: 1px solid #ccc; posit…...

######## redis各章节终篇索引(更新中) ############

其他 父子关系&#xff08;ctx、协程&#xff09;#### golang存在的父子关系 ####_子goroutine panic会导致父goroutine挂掉吗-CSDN博客 参数传递&#xff08;slice、map&#xff09;#### go中参数传递&#xff08;涉及&#xff1a;切片slice、map、channel等&#xff09; ###…...

一个基于MySQL的数据库课程设计的基本框架

数据库课程设计&#xff08;MySQL&#xff09;通常涉及多个步骤&#xff0c;以确保数据库的有效设计、实现和维护。以下是一个基于MySQL的数据库课程设计的基本框架&#xff0c;结合参考文章中的相关信息进行整理&#xff1a; ### 一、引言 * **背景**&#xff1a;简要介绍为…...

架构设计基本原则

开闭原则 开闭原则&#xff08;Open Closed Principle&#xff0c;OCP&#xff09;是面向对象编程&#xff08;OOP&#xff09;中的一个核心原则&#xff0c;主要强调的是软件实体&#xff08;类、模块、函数等&#xff09;应该对扩展开放&#xff0c;对修改封闭。 解释&…...

云原生应用开发培训,开启云计算时代的新征程

在云计算时代&#xff0c;云原生应用开发技术已经成为IT领域的热门话题。如果您想要转型至云原生领域&#xff0c;我们的云原生应用开发培训将帮助您开启新征程。 我们的课程内容涵盖了云原生技术的基础概念、容器技术、微服务架构、持续集成与持续发布&#xff08;CI/CD&#…...

【数据库设计】宠物商店管理系统

目录 &#x1f30a;1 问题的提出 &#x1f30a;2 需求分析 &#x1f30d;2.1 系统目的 &#x1f30d;2.2 用户需求 &#x1f33b;2.2.1 我国宠物行业作为新兴市场&#xff0c;潜力巨大 &#x1f33b;2.2.2 我国宠物产品消费规模逐年增大 &#x1f33b;2.2.3 我国宠物主选…...

前端 JS 经典:node 的模块查找策略

前言&#xff1a;我们引入模块后&#xff0c;node 大概的查找步骤分为 文件查找、文件夹查找、内置模块查找、第三方模块查找&#xff0c;在 node 中使用 ESM 模块语法&#xff0c;需要创建 package.json 文件&#xff0c;并将 type 设置为 module。简单起见&#xff0c;我们用…...

C++中的23种设计模式

目录 摘要 创建型模式 1. 工厂方法模式&#xff08;Factory Method Pattern&#xff09; 2. 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09; 3. 单例模式&#xff08;Singleton Pattern&#xff09; 4. 生成器模式&#xff08;Builder Pattern&#xff0…...

vue.js+node.js+mysql在线聊天室源码

vue.jsnode.jsmysql在线聊天室源码 技术栈&#xff1a;vue.jsElement UInode.jssocket.iomysql vue.jsnode.jsmysql在线聊天室源码...

浏览器无痕模式和非无痕模式的区别

无痕模式 1. 历史记录&#xff1a;在无痕模式下&#xff0c;浏览器不会保存浏览记录、下载记录、表单数据和Cookies。当你关闭无痕窗口后&#xff0c;这些信息都会被删除。
 2. Cookies&#xff1a;无痕模式会在会话期间临时存储Cookies&#xff0c;但在关闭无痕窗口…...

WPF框架,修改ComboBox控件背景色 ,为何如此困难?

直接修改Background属性不可行 修改控件背景颜色&#xff0c;很多人第一反应便是修改Background属性&#xff0c;但是修改过后便会发现&#xff0c;控件的颜色没有发生任何变化。 于是在网上搜索答案&#xff0c;便会发现一个异常尴尬的情况&#xff0c;要么就行代码简单但是并…...

Diffusers代码学习: 文本引导深度图像生成

StableDiffusionDepth2ImgPipeline允许传递文本提示和初始图像&#xff0c;以调节新图像的生成。此外&#xff0c;还可以传递depth_map以保留图像结构。如果没有提供depth_map&#xff0c;则管道通过集成的深度估计模型自动预测深度。 # 以下代码为程序运行进行设置 import o…...

网络的下一次迭代:AVS 将为 Web2 带去 Web3 的信任机制

撰文&#xff1a;Sumanth Neppalli&#xff0c;Polygon Ventures 编译&#xff1a;Yangz&#xff0c;Techub News 本文来源香港Web3媒体&#xff1a;Techub News AVS &#xff08;主动验证服务&#xff09;将 Web2 的规模与 Web3 的信任机制相融合&#xff0c;开启了网络的下…...

OpenCV 的模板匹配

OpenCV中的模板匹配 模板匹配&#xff08;Template Matching&#xff09;是计算机视觉中的一种技术&#xff0c;用于在大图像中找到与小图像&#xff08;模板&#xff09;相匹配的部分。OpenCV提供了多种模板匹配的方法&#xff0c;主要包括基于相关性和基于平方差的匹配方法。…...

26.0 Http协议

1. http协议简介 HTTP(Hypertext Transfer Protocol, 超文本传输协议): 是万维网(WWW: World Wide Web)中用于在服务器与客户端(通常是本地浏览器)之间传输超文本的协议.作为一个应用层的协议, HTTP以其简洁, 高效的特点, 在分布式超媒体信息系统中扮演着核心角色. 自1990年提…...

IO流打印流

打印流 IO流打印流是Java中用来将数据打印到输出流的工具。打印流提供了方便的方法来格式化和输出数据&#xff0c;可以用于将数据输出到控制台、文件或网络连接。 分类:打印流一般是指:PrintStream&#xff0c;PrintWriter两个类 特点1:打印流只操作文件目的地&#xff0c;…...

Cohere reranker 一致的排序器

这本notebook展示了如何在检索器中使用 Cohere 的重排端点。这是在 ContextualCompressionRetriever 的想法基础上构建的。 %pip install --upgrade --quiet cohere %pip install --upgrade --quiet faiss# OR (depending on Python version)%pip install --upgrade --quiet…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...