当前位置: 首页 > news >正文

二分+ST表+递推,Cf 1237D - Balanced Playlist

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

Problem - 1237D - Codeforces


二、解题报告

1、思路分析

case3提示我们一件事情:如果存在某个位置永远不停止,那么所有位置都满足永远不停止

很容易证明

随着下标右移,区间最大值不会变大,那么后面2倍大于旧的最大值的数的二倍仍然大于新的最大值

那么对于每个位置我们要找到第一个满足a[i] < max / 2的 i

我们可以st表预处理出区间最大值最小值

然后对于递推求解ans

对于i,我们二分查找找到第一个大于a[i]的j,同样二分查找找到第一个a[k] < a[i]的k

如果k < j,那么显然答案就是j - i

否则, ans[i] = k - i + ans[k % N]

我们建立了递推关系,一共N个状态,每个状态O(log)转移,总体时间复杂度就是O(NlogN)

2、复杂度

时间复杂度: O(NlogN)空间复杂度:O(NlogN)

3、代码详解

 ​
#include <bits/stdc++.h>
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;std::ostream& operator<< (std::ostream& out, i128 x) {std::string s;while (x) s += ((x % 10) ^ 48), x /= 10;std::reverse(s.begin(), s.end());return out << s;
}template<class T, int M>
struct ST {T n;std::vector<T> nums;std::vector<T> log2;std::vector<std::array<T, M>> f0, f1;ST (T _n, std::vector<T>& _nums): n(_n), nums(_nums), log2(_n + 1), f0(_n), f1(_n) {log2[2] = 1;for (int i = 3; i <= n; i ++ ) log2[i] = log2[i >> 1] + 1;for (int i = 0; i < n; i ++ ) f0[i][0] = f1[i][0] = nums[i];for (int j = 1; j < M; j ++ )for (int i = 0; i < n && i + (1 << (j - 1)) < n; i ++ )f0[i][j] = std::max(f0[i][j - 1], f0[i + (1 << (j - 1))][j - 1]), f1[i][j] = std::min(f1[i][j - 1], f1[i + (1 << (j - 1))][j - 1]);}std::array<T, 2> query(int l, int r) {int k = log2[r - l + 1];return { std::max(f0[l][k], f0[r - (1 << k) + 1][k]), std::min(f1[l][k], f1[r - (1 << k) + 1][k]) };}
};void solve() {int N;std::cin >> N;std::vector<int> a(N * 2);for (int i = 0; i < N; i ++ ) std::cin >> a[i], a[i + N] = a[i];ST<int, 18> st(N * 2, a);if (st.query(0, N - 1)[0] <= st.query(0, N - 1)[1] * 2LL) {for (int i = 0; i < N; i ++ ) std::cout << -1 << " \n"[i == N - 1];return;}std::vector<int> ans(N, -1);auto findmi = [&](int l, int r) -> int {int x = a[l - 1];while (l < r) {int mid = l + r >> 1;auto [ma, mi] = st.query(l, mid);if (mi * 2LL < x) r = mid;else l = mid + 1;}return l;};auto findma = [&](int l, int r) -> int {int x = a[l - 1];while (l < r) {int mid = l + r >> 1;auto [ma, mi] = st.query(l, mid);if (ma > x) r = mid;else l = mid + 1;}   return l;};auto dfs = [&](auto&& self, int x) -> int {if (~ans[x]) return ans[x];int lt = findmi(x + 1, x + N), gt = findma(x + 1, x + N);if (lt < gt) return ans[x] = lt - x;return ans[x] = gt - x + self(self, gt % N);};for (int i = 0; i < N; i ++ ) std::cout << dfs(dfs, i) << " \n"[i == N - 1];
}   int main(int argc, char** argv) {std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);int _ = 1;// std::cin >> _;while (_ --)solve();return 0;
}

相关文章:

二分+ST表+递推,Cf 1237D - Balanced Playlist

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 1237D - Codeforces 二、解题报告 1、思路分析 case3提示我们一件事情&#xff1a;如果存在某个位置永远不停止&#xff0c;那么所有位置都满足永远不停止 很容易证明 随着下标右移&#xff0c…...

被裁员不可怕,可怕的是你只会写代码!

“听说隔壁部门又要裁员了&#xff0c;人心惶惶的……” “是啊&#xff0c;这年头&#xff0c;工作真是越来越难了&#xff0c;谁知道下一个会不会是自己呢&#xff1f;” 这两天&#xff0c;公司里弥漫着一股紧张的气氛&#xff0c;裁员的消息&#xff0c;就像是一场突如其来…...

服务器之间的时间如何保证一致

服务器之间的时间一致性主要通过以下几种方法和技术来保证&#xff1a; NTP&#xff08;Network Time Protocol&#xff09;同步&#xff1a;这是最常见的时钟同步方法。NTP协议允许服务器从一个或多个时间服务器&#xff08;称为NTP服务器&#xff09;获取精确的时间信息&…...

算法体系-20 第二十节暴力递归到动态规划

前言 动态规划模型从尝试暴力递归到傻缓存到动态规划 四种模型和体系班两种模型一共六种模型 0.1 从左往右模型 0.2 范围讨论模型范围尝试模型 &#xff08;这种模型特别在乎讨论开头如何如何 结尾如何如何&#xff09; 玩家博弈问题&#xff0c;玩家玩纸牌只能那左或者右 0.3 …...

字符集相关变量理解

建表 创建一个新表&#xff0c;想让他的字符集是 gbk&#xff0c;怎么弄? 尝试1&#xff1a; 失败&#xff01;原因&#xff1a; set names gbk; 等价于&#xff1a;set character_set_client gbk; set character_set_connection gbk; set character_set_results gbk;尝…...

618哪些数码产品比较好?2024超高人气产品推荐!

随着6.18大促的脚步渐近&#xff0c;你是否已经按捺不住内心的激动&#xff0c;想要在网络购物的海洋中畅游&#xff0c;尽情享受购物的狂欢&#xff1f;然而&#xff0c;面对繁多的商品和各式各样的优惠活动&#xff0c;你是否感到了一丝迷茫&#xff1f;作为一位经验丰富的网…...

基础-01-计算机网络概论

一. 计算机网络的发展与分类 1.计算机网络的形成与发展 计算机网络&#xff1a;计算机技术与通信技术的结合 ICTITCT 2.计算机网络标准阶段 3.计算机网络分类1:通信子网和资源子网 通信子网:通信节点(集线器、交换机、路由器等)和通信链路(电话线、同轴电缆、无线电线路、卫…...

STM32学习笔记(一)--时钟树详解

&#xff08;1&#xff09;时钟概述&#xff1b;时钟是具有周期性的脉冲信号&#xff0c;最常用的是占空比50%的方波。&#xff08;时钟相当于单片机的脉搏&#xff1b;STM32本身非常复杂&#xff0c;外设非常的多&#xff0c;为了保持低功耗工作&#xff0c;STM32 的主控默认不…...

JAVA小知识16:JAVA常用的API

一、Math 方法名说明public static int abs(int a)获取参数绝对值public static double ceil(double a)向上取整public static double floor(double a)向下取整public static int round(float a)四舍五入public static int max(int a,int b)获取两个int值中的较大值public s…...

PaddleDetection快速体验quick_start

1 快速体验 # 设置显卡 export CUDA_VISIBLE_DEVICES0# 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gputrue weightshttps://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coc…...

《Foundation CSS 参考手册》

《Foundation CSS 参考手册》 引言 Foundation 是一个强大的前端框架&#xff0c;它为开发者提供了一系列的CSS工具和组件&#xff0c;以便快速构建响应式、移动优先的网站。本参考手册旨在为那些希望深入了解和使用Foundation CSS的开发者提供一个全面的指南。 基础知识 1…...

方法递归-结合案例阶乘问题、求和问题和猴子吃桃问题

方法递归 递归是一种算法 在程序设计语言中广泛应用. 从形式上来说&#xff1a;方法调用自身的形式称为方法递归&#xff08;recursion&#xff09;. 递归的形式&#xff1a; 直接递归&#xff1a;方法调用自己。间接递归&#xff1a;方法调用其他方法&#xff0c;其他方法…...

有一个主域名跟多个二级子域名时该怎么申请SSL证书?

当您拥有主域名以及多个子域名时&#xff0c;选择合适的SSL证书类型对于确保网站的安全性至关重要。以下是三种SSL证书类型的简要介绍&#xff1a; 单域名SSL证书&#xff1a; 功能&#xff1a;只能绑定单个域名&#xff0c;无论是主域名还是子域名。 适用场景&#xff1a;仅…...

LabVIEW伺服电机可应用在哪些领域

LabVIEW与伺服电机的结合&#xff0c;得益于LabVIEW强大的图形编程能力和伺服电机的高精度、高响应速度&#xff0c;广泛应用于多个领域。以下是一些主要应用领域&#xff1a; 1. 工业自动化 数控机床控制 LabVIEW用于控制伺服电机在数控机床中的运动&#xff0c;实现高精度的…...

nvidia 显卡 没有正确安装或配置 OpenGL 库

看到这个错误可能意味着你的系统没有正确安装或配置 OpenGL 库。以下是一些步骤来解决这个问题&#xff1a; 1. 安装必要的软件包 确保你已经安装了必要的软件包&#xff0c;包括 mesa-utils 和 nvidia-driver。 安装 mesa-utils sudo apt update sudo apt install mesa-ut…...

将自己md文件发布到自己的博客园实现文件的持久化存储

上传markdown文件到博客园 目录 【0】需求原因【1】功能【2】环境【最佳实践测试】 &#xff08;1&#xff09;查看 Typora 设置&#xff08;2&#xff09;配置 pycnblog 配置文件 config.yaml&#xff08;3&#xff09;运行 pycnblog 中的文件 cnblog_markdown.cmd&#xff0…...

uni-app的生命周期(应用,页面生命周期)

1. uni-app的生命周期&#xff08;应用&#xff0c;页面生命周期&#xff09; 1.1. 应用生命周期 1.1.1. 定义在app.vue中 生命周期函数名说明onLaunch当uni-app 初始化完成时触发&#xff08;全局只触发一次&#xff09;onShow当 uni-app 启动&#xff0c;或从后台进入前台…...

响应式企业网站建站系统源码 模版丰富+一站式建站 全开源可二次开发 带源码包+搭建部署教程

系统概述 在数字化转型的浪潮中&#xff0c;企业官网作为品牌展示、产品推广及客户服务的重要窗口&#xff0c;其建设质量直接影响着企业的线上形象与市场竞争力。响应式企业网站建站系统源码的出现&#xff0c;为企业提供了一种高效、灵活且成本可控的建站解决方案。 代码示…...

如何解除内存卡的写保护并格式化为exFAT文件系统

最近有客户提问内存卡提示写保护&#xff0c;且无法格式化为exFAT格式的问题&#xff0c;可能是由于多种原因引起的。以下是一些可能的解决方法&#xff1a; 1. 检查物理写保护开关 一些SD卡和MicroSD卡适配器上有一个小的物理开关&#xff0c;可以启用或禁用写保护。确保这个…...

【 EI会议 | 西南大学主办 | 往届均已实现检索】第三届神经形态计算国际会议(ICNC 2024)

第三届神经形态计算国际会议&#xff08;ICNC 2024) 2024 3rd International Conference on Neuromorphic Computing (ICNC 2024) 一、重要信息 大会官网&#xff1a;www.ic-nc.org&#xff08;点击投稿/参会/了解会议详情&#xff09; 会议时间&#xff1a;2024年12月13-15…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...