当前位置: 首页 > news >正文

0107连通分量-无向图-数据结构和算法(Java)

文章目录

    • 1 API
    • 2 代码实现和分析
    • 测试
    • 后记

1 API

深度优先搜索下一个直接应用就是找出一幅图中的连通分量,定义如下API。

public class CC
CC(Graph g)预处理构造函数
booleanconnected(int v, int w)v和w连通吗
intcount()连通分量数
intid(int v)v所在的连通分量标识符(0~count()-1)

2 代码实现和分析

package com.gaogzhen.datastructure.graph.undirected;import com.gaogzhen.datastructure.stack.Stack;
import edu.princeton.cs.algs4.Graph;
import edu.princeton.cs.algs4.Queue;import java.util.*;/*** 无向图连通分量* @author: Administrator* @createTime: 2023/03/08 20:18*/
public class CC {/*** 顶点是否标记数组*/private boolean[] marked;/*** 顶点所在连通分量标志:0~count()-1*/private int[] id;/*** 每个连通分量顶点数量*/private int[] size;/*** 连通分量数量*/private int count;/*** 要处理的无向图*/private Graph graph;/*** 计算给定无向图的连通分量* @param graph 指定的无向图*/public CC(Graph graph) {this.graph = graph;int len = graph.V();// 初始化marked = new boolean[len];id = new int[len];size = new int[len];// 搜索连通分量bfs();}/*** 深度优先搜索连通分量*/private void dfs() {// 深度优先非递归实现,借助栈Stack<Iterator<Integer>> c = new Stack<>();// 搜索连通分量for (int v = 0; v < graph.V(); v++) {// 遍历图中所有顶点,以没有被标记过的顶点为起点,搜索连通分量// 执行完一次bsf,标记一个包含顶点v的连通分量if (!marked[v]) {dfs(c, v);// 连通分量标记+1count++;}}}/*** 深度优先搜索连通分量* @param v 起点*/private void dfs(Stack<Iterator<Integer>> c, int v) {if (!marked[v]) {// 起点未标记,标记计数加1// 起点默认没标记,可以不加是否标记判断marked[v] = true;id[v] = count;size[count]++;Iterable<Integer> iterable = graph.adj(v);Iterator<Integer> it;if (iterable != null && (it = iterable.iterator()) != null){// 顶点对应的邻接表迭代器存入栈c.push(it);}}while (!c.isEmpty()) {Iterator<Integer> it = c.pop();int x;while (it.hasNext()) {// 邻接表迭代器有元素,获取元素x = it.next();if (!marked[x]) {// 顶点未被标记,标记计数+1marked[x] = true;id[x] = count;size[count]++;if (it.hasNext()) {// 邻接表迭代器有元素重新入栈c.push(it);}// 深度优先原则,当前迭代器入栈,新标记顶点的邻接表迭代器入栈,下次循环优先访问Iterable<Integer> iterable = graph.adj(x);if (iterable != null && (it = iterable.iterator()) != null){c.push(it);}break;}}}}/*** 广度优先搜索连通分量*/private void bfs() {// 广度优先非递归实现,借助队列Queue<Integer> q = new Queue<>();// 搜索连通分量for (int v = 0; v < graph.V(); v++) {// 遍历图中所有顶点,以没有被标记过的顶点为起点,搜索连通分量// 执行完一次bsf,标记一个包含顶点v的连通分量if (!marked[v]) {bfs(q, v);// 连通分量标记+1count++;}}}private void bfs(Queue<Integer> q, int v) {marked[v] = true;id[v] = count;size[count]++;q.enqueue(v);while (!q.isEmpty()) {Integer x = q.dequeue();for (Integer w : graph.adj(x)) {if (!marked[w]) {marked[w] = true;id[w] = count;size[count]++;q.enqueue(w);}}}}/*** 给定顶点所在的连通分量标记* @param v 给定顶点* @return 顶点所在的连通分量标记* @throws IllegalArgumentException unless {@code 0<= v < V}*/public int id(int v) {validateVertex(v);return id[v];}/*** 顶点v和w是否连通(是否在同一个连通分量内)* @param v 顶点v* @param w 顶点w* @return  {@code true} 如果{@code v}和{@code w}在同一个连通分量内;否则{@code false}* @throws IllegalArgumentException unless {@code 0 <= v < V}* @throws IllegalArgumentException unless {@code 0 <= w < V}*/public boolean connected(int v, int w) {validateVertex(v);validateVertex(w);// 如果v和w在同一连通分量,那么连通分量标记相等;否则falsereturn id[v] == id[w];}/*** 返回无向图{@code graph}中连通分量数量* @return  返回无向图{@code graph}中连通分量数量*/public int count() {return count;}/*** 检查指定的顶点是否是有效顶点* @param v 给定顶点* @throws IllegalArgumentException unless {@code 0<= v < V}*/private void validateVertex(int v) {int V = marked.length;if (v < 0 || v >= V) {throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));}}public void display() {Map<Integer, ArrayList<Integer>> map = new HashMap<>(count);for (int i = 0; i < count; i++) {map.put(i, new ArrayList<>());}for (int i = 0; i < id.length; i++) {int k = id[i];ArrayList<Integer> list = map.get(k);list.add(i);map.put(k, list);}System.out.println("分量标记\t顶点数量\t顶点");for (int i = 0; i < count; i++) {ArrayList<Integer> l = map.get(i);System.out.println(i +"\t\t" + l.size() + "\t\t" + l);}}
}

这里广度优先搜索和深度优先搜索都能完成连通分量的搜索和标记,这里以广度优先搜索为例,简单讲解下算法。

说明:

  1. 算法第四版给出的是深度优先的递归版本实现,我们这里给出了非递归的广度优先搜索和深度优先搜索实现。
  2. 每次bfs(q, v)一定能保证完成包含顶点v的这个连通分量的搜索,这样外层for遍历所有顶点,在该连通分量的顶点(被标记)不在执行bfs;不在该连通分量的顶点(未被标记),一定是属于其他连通分量。直至遍历结束。
  3. bsf(q,v)通过先标记起点v,在标记和顶点v距离1条边的顶点,2条边的顶点,依次类推,直到标记所有连通的顶点。
  4. bfs(q, v)内顶点都属于同一连通分量,id[]记录这些顶点对应的连通分量标记就相同;每标记一个顶点,相应的记录该连通分量size[]顶点数量+1。

思考:

  1. 这里为什么即可以用广度优先又可以用深度优先呢?

命题C。深度优先搜索和广度优先搜索的预处理使用的时间和空间与V+E成正比且可以在常数时间内处理关于图的连通性查询。

证明。有代码可以知道每个邻接表的元素都只会被检查一次,共有2E个元素(每条边2个)。

测试

测试代码:

public static void testCC() {String path = "H:\\gaogzhen\\java\\projects\\algorithm\\asserts\\tinyG.txt";In in = new In(path);Graph graph = new Graph(in);CC cc = new CC(graph);int v = 0, w = 5;System.out.println("顶点 " + v + " 和顶点 " + w + "是否连通:" + cc.connected(v, w));System.out.println("顶点 " + w + "连通分量标记:" + cc.id(w));System.out.println("连通分量数量:" + cc.count());cc.display();
}

测试结果:

顶点 0 和顶点 5是否连通:true
顶点 5连通分量标记:0
连通分量数量:3
分量标记	顶点数量	顶点
0		7		[0, 1, 2, 3, 4, 5, 6]
1		2		[7, 8]
2		4		[9, 10, 11, 12]

后记

如果小伙伴什么问题或者指教,欢迎交流。

❓QQ:806797785

⭐️源代码仓库地址:https://gitee.com/gaogzhen/algorithm

参考链接:

[1][美]Robert Sedgewich,[美]Kevin Wayne著;谢路云译.算法:第4版[M].北京:人民邮电出版社,2012.10.p344-348.

相关文章:

0107连通分量-无向图-数据结构和算法(Java)

文章目录1 API2 代码实现和分析测试后记1 API 深度优先搜索下一个直接应用就是找出一幅图中的连通分量,定义如下API。 public class CCCC(Graph g)预处理构造函数booleanconnected(int v, int w)v和w连通吗intcount()连通分量数intid(int v)v所在的连通分量标识符(0~count()-…...

[学习笔记]黑马程序员python教程

文章目录思维导图Python基础知识图谱面向对象SQL入门和实战Python高阶技巧第一阶段第九章&#xff1a;Python异常、模块与包1.9.1异常的捕获1.9.1.1 为什么要捕获异常1.9.1.2 捕获常规的异常1.9.1.3 捕获指定的异常1.9.1.4 捕获多个异常1.9.1.5 捕获全部异常1.9.1.6 异常的else…...

如何配置用于构建 FastReport Online Designer 的 API ?

FastReport Online Designer 是一个跨平台的报表设计器&#xff0c;允许通过任何平台的移动设备创建和编辑报表。今天我们就一起来看看在2023版中新增和改进的功能有哪些&#xff0c;点击下方可以获取最新版免费试用哦&#xff01; FastReport Onlin Designe最新版试用https:/…...

【嵌入式Linux内核驱动】02_字符设备驱动

字符设备驱动 〇、基本知识 设备驱动分类 &#xff08;按共性分类方便管理&#xff09; 1.字符设备驱动 字符设备指那些必须按字节流传输&#xff0c;以串行顺序依次进行访问的设备。它们是我们日常最常见的驱动了&#xff0c;像鼠标、键盘、打印机、触摸屏&#xff0c;还有…...

【零散整理】

1-1 git查看代码的项目总行数 git log --prettytformat: --numstat | awk ‘{ add $1; subs $2; loc $1 - $2 } END { printf “added lines: %s, removed lines: %s, total lines: %s\n”, add, subs, loc }’ - 1-2 cookie const cookies document.cookie.split(; )for…...

RocketMQ重复消费的症状以及解决方案

RocketMQ重复消费的症状以及解决方案 生产消息时重复 症状 当一条消息已被成功发送到 消费者 并完成持久化&#xff0c;此时出现了网络闪断或者客户端宕机&#xff0c;导致服务端对客户端应答失败。 如果此时 生产者 意识到消息发送失败并尝试再次发送消息&#xff0c;消费者…...

数字化时代,企业的商业模式建设

随着新一代信息化、数字化技术的应用&#xff0c;众多领域通过科技革命和产业革命实现了深度化的数字改造&#xff0c;进入到以数据为核心驱动力的&#xff0c;全新的数据处理时代&#xff0c;并通过业务系统、商业智能BI等数字化技术和应用实现了数据价值&#xff0c;从数字经…...

项目实战典型案例23——-注册上nacos上的部分服务总是出现频繁掉线的情况

注册上nacos上的部分服务总是出现频繁掉线的情况一&#xff1a;背景介绍二&#xff1a;思路&方案解决问题过程涉及到的知识nacos服务注册和服务发现一&#xff1a;背景介绍 spring cloud项目通过nacos作为服务中心和配置中心&#xff0c;出现的问题是其中几个服务总是出现…...

玩转金山文档 3分钟让你的文档智能化

在上个月底&#xff0c;我们给大家推荐了金山轻维表的几个使用场景&#xff0c;社群中不少用户反响很好&#xff0c;对其中一些场景的解决方案十分感兴趣。但也有一些人表示&#xff0c;有些场景不知道如何实现&#xff0c;希望我们能提供模版/教程。这次我们将做一期热门模板盘…...

安装了nodejs怎么安装nvm

第一步&#xff0c;从控制面板卸载已经安装的node 第二步&#xff0c;删除C盘program开头文件夹下的node文件 第三步&#xff0c;去C/user/用户名 文件夹下&#xff0c;删除.npmrc文件 第四步&#xff0c;打开隐藏文件&#xff0c;第三步文件夹下有一个Appdata文件&#xff…...

java安全编码规范考试

java安全编码规范考试 整理不易&#xff0c;收点币&#xff01;&#xff01; 安全编码规范考试.md 下面对zip文件的安全解压缩描述&#xff0c;错误的是 A.zip文件解压时&#xff0c;可以使用entry.getSize(&#xff09;对解压缩文件进行文件大小判断 B.zip文件解压时&…...

表格检测识别技术的发展历程

近年来&#xff0c;随着计算机技术的飞速发展&#xff0c;越来越多的研究者开始关注表格检测识别技术。表格检测识别技术是一种利用计算机自动处理表格的技术&#xff0c;它可以实现从文本中检测出表格&#xff0c;并进行识别和提取。这种技术有助于提高文本处理的效率&#xf…...

设计UI - Adobe xd对象介绍

矩形工具 新建矩形 操作步骤&#xff1a;选择矩形工具&#xff0c;快捷键R&#xff0c;鼠标在画板上拖出矩形即可。 拖动定界框周围圆形手柄&#xff0c;可快速调整矩形大小&#xff0c;也可以输入宽和高的参数对矩形大小进行改变。 移动矩形 操作步骤&#xff1a;选择选择工具…...

优思学院|精益生产中的“单件流”真的能够做到吗?

精益生产中提到的“一个流”&#xff08;One Piece Flow&#xff09;是一种生产方式&#xff0c;它的核心理念是通过合理配置作业场地、人员和设备&#xff0c;使产品从投入到成品产出的整个制造加工过程中始终处于不停滞、不堆积、不超越&#xff0c;按节拍一个一个地流动。 …...

移除元素问题解决方法------LeetCode-OJ题

问题&#xff1a; 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 要求&#xff1a; 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改…...

JavaScript学习笔记(1.0)

push() 语法&#xff1a;数组.push(数据) 作用&#xff1a;将数据追加到数组的末尾 返回值&#xff1a;追加数据后数组最新的长度 pop() 语法&#xff1a;数组.pop() 作用&#xff1a;删除数组最后一个数据 返回值&#xff1a;被删除的数据 unshift() 语法&#xff1a;数…...

FCN网络介绍

目录前言一.FCN网络二.网络创新点前言 在图像分割领域&#xff0c;有很多经典的网络&#xff0c;如MASK R-CNN&#xff0c;U-Net&#xff0c;SegNet&#xff0c;DeepLab等网络都是以FCN为基础进行设计的。我们这里简单介绍一下这个网络。 一.FCN网络 FCN网络介绍   FCN 即全…...

Idea+maven+spring-cloud项目搭建系列--11 整合dubbo

前言&#xff1a; 微服务之间通信框架dubbo&#xff0c;使用netty &#xff08;NIO 模型&#xff09;完成RPC 接口调用&#xff1b; 1 dubbo 介绍&#xff1a; Apache Dubbo 是一款 RPC 服务开发框架&#xff0c;用于解决微服务架构下的服务治理与通信问题&#xff0c;官方提…...

2023年上半年北京杭州/广州深圳软考中/高级报名入口

软考是全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;项目&#xff0c;是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试&#xff0c;既属于国家职业资格考试&#xff0c;又是职称资格考试。 系统集成…...

jupyter notebook配置和使用

简介 Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算&#xff1a;开发、文档编写、运行代码和展示结果。 参考博客&#xff1a;https://zhuanlan.zhihu.com/p/33105153 特点 ①编程时具有语法高亮、缩进、tab补全的功能。 ② 可直接通过浏览器…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...